Why the World Is Still Getting Better—and That’s Likely to Continue
By
Sveta McShane – Jan 05, 2018 From time to time, the Singularity Hub editorial team unearths a gem from the archives and wants to share it all over again. It’s usually a piece that was popular back then and we think is still relevant now. This is one of those articles. It was originally published November 1, 2016. We hope you enjoy it!
If you read or watch the news, you’ll likely think the world is falling to pieces. Trends like terrorism, climate change, and a growing population straining the planet’s finite resources can easily lead you to think our world is in crisis.
But there’s another story, a story the news doesn’t often report. This story is backed by data, and it says we’re actually living in the most peaceful, abundant time in history, and things are likely to continue getting better.
“Violence has been in decline for thousands of years, and today we may be living in the most peaceful era in the existence of our species.” –Steven Pinker
So now that you know the world isn’t so bad after all, here’s another thing to think about: it can get much better, very soon.
In their book Abundance: The Future Is Better Than You Think, Steven Kotler and Peter Diamandis suggest it may be possible for us to meet and even exceed the basic needs of all the people living on the planet today.
“In the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.”
This means making sure every single person in the world has adequate food, water and shelter, as well as a good education, access to healthcare, and personal freedom.
This might seem unimaginable, especially if you tend to think the world is only getting worse. But given how much progress we’ve already made in the last few hundred years, coupled with the recent explosion of information sharing and new, powerful technologies, abundance for all is not as out of reach as you might believe.
Throughout history, we’ve seen that in the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.
In Abundance, Diamandis and Kotler tell the story of how aluminum went from being one of the rarest metals on the planet to being one of the most abundant…
In the 1800s, aluminum was more valuable than silver and gold because it was rarer. So when Napoleon III entertained the King of Siam, the king and his guests were honored by being given aluminum utensils, while the rest of the dinner party ate with gold.
But aluminum is not really rare.
In fact, aluminum is the third most abundant element in the Earth’s crust, making up 8.3% of the weight of our planet. But it wasn’t until chemists Charles Martin Hall and Paul Héroult discovered how to use electrolysis to cheaply separate aluminum from surrounding materials that the element became suddenly abundant.
The problems keeping us from achieving a world where everyone’s basic needs are met may seem like resource problems — when in reality, many are accessibility problems.
The Engine Driving Us Toward Abundance: Exponential Technology
History is full of examples like the aluminum story. The most powerful one of the last few decades is information technology. Think about all the things that computers and the internet made abundant that were previously far less accessible because of cost or availability …
Here are just a few examples:
Easy access to the world’s information
Ability to share information freely with anyone and everyone
Free/cheap long-distance communication
Buying and selling goods/services regardless of location
Less than two decades ago, when someone reached a certain level of economic stability, they could spend somewhere around $10K on stereos, cameras, entertainment systems, etc — today, we have all that equipment in the palm of our hand.
Now, there is a new generation of technologies heavily dependant on information technology and, therefore, similarly riding the wave of exponential growth. When put to the right use, emerging technologies like artificial intelligence, robotics, digital manufacturing, nano-materials and digital biology make it possible for us to drastically raise the standard of living for every person on the planet.
These are just some of the innovations which are unlocking currently scarce resources:
IBM’s Watson Health is being trained and used in medical facilities like the Cleveland Clinic to help doctors diagnose disease. In the future, it’s likely we’ll trust AI just as much, if not more than humans to diagnose disease, allowing people all over the world to have access to great diagnostic tools regardless of whether there is a well-trained doctor near them.
Solar power is now cheaper than fossil fuels in some parts of the world, and with advances in new materials and storage, the cost may decrease further. This could eventually lead to nearly-free, clean energy for people across the world.
Self-driving cars are already on the roads of several American cities and will be coming to a road near you in the next couple years. Considering the average American spends nearly two hours driving every day, not having to drive would free up an increasingly scarce resource: time.
The Change-Makers
Today’s innovators can create enormous change because they have these incredible tools—which would have once been available only to big organizations—at their fingertips. And, as a result of our hyper-connected world, there is an unprecedented ability for people across the planet to work together to create solutions to some of our most pressing problems today.
“In today’s hyperlinked world, solving problems anywhere, solves problems everywhere.” –Peter Diamandis and Steven Kotler, Abundance
According to Diamandis and Kotler, there are three groups of people accelerating positive change.
DIY Innovators
In the 1970s and 1980s, the Homebrew Computer Club was a meeting place of “do-it-yourself” computer enthusiasts who shared ideas and spare parts. By the 1990s and 2000s, that little club became known as an inception point for the personal computer industry — dozens of companies, including Apple Computer, can directly trace their origins back to Homebrew.
Since then, we’ve seen the rise of the social entrepreneur, the Maker Movement and the DIY Bio movement, which have similar ambitions to democratize social reform, manufacturing, and biology, the way Homebrew democratized computers. These are the people who look for new opportunities and aren’t afraid to take risks to create something new that will change the status-quo.
Techno-Philanthropists Unlike the robber barons of the 19th and early 20th centuries, today’s “techno-philanthropists” are not just giving away some of their wealth for a new museum, they are using their wealth to solve global problems and investing in social entrepreneurs aiming to do the same.
The Bill and Melinda Gates Foundation has given away at least $28 billion, with a strong focus on ending diseases like polio, malaria, and measles for good. Jeff Skoll, after cashing out of eBay with $2 billion in 1998, went on to create the Skoll Foundation, which funds social entrepreneurs across the world. And last year, Mark Zuckerberg and Priscilla Chan pledged to give away 99% of their $46 billion in Facebook stock during their lifetimes.
The Rising Billion Cisco estimates that by 2020, there will be 4.1 billion people connected to the internet, up from 3 billion in 2015. This number might even be higher, given the efforts of companies like Facebook, Google, Virgin Group, and SpaceX to bring internet access to the world. That’s a billion new people in the next several years who will be connected to the global conversation, looking to learn, create and better their own lives and communities.In his book, Fortune at the Bottom of the Pyramid, C.K. Pahalad writes that finding co-creative ways to serve this rising market can help lift people out of poverty while creating viable businesses for inventive companies.
The Path to Abundance
Eager to create change, innovators armed with powerful technologies can accomplish incredible feats. Kotler and Diamandis imagine that the path to abundance occurs in three tiers:
Basic Needs (food, water, shelter)
Tools of Growth (energy, education, access to information)
Ideal Health and Freedom
Of course, progress doesn’t always happen in a straight, logical way, but having a framework to visualize the needs is helpful.
Many people don’t believe it’s possible to end the persistent global problems we’re facing. However, looking at history, we can see many examples where technological tools have unlocked resources that previously seemed scarce.
Technological solutions are not always the answer, and we need social change and policy solutions as much as we need technology solutions. But we have seen time and time again, that powerful tools in the hands of innovative, driven change-makers can make the seemingly impossible happen.
You can download the full “Path to Abundance” infographic here. It was created under a CC BY-NC-ND license. If you share, please attribute to Singularity University.
Les pedimos a los expertos de nuestros Consejos Mundiales Futuros que compartieran su opinión acerca del mundo en 2030; y estos son los resultados, desde la muerte de las compras hasta el resurgimiento de los Estados nación.
“Nada me pertenece. No tengo coche. No soy dueña de mi casa. No poseo electrodomésticos ni ropa”, escribe la parlamentaria danesa Ida Auken. En la ciudad de 2030, las compras son un recuerdo lejano; sus habitantes han encontrado la solución de la energía limpia y toman prestado lo que necesitan a pedido.
«China tomó la delantera en 2017 con un mercado para negociar el derecho a emitir una tonelada de CO2, y colocó al mundo en un camino hacia un solo precio del carbono y un poderoso incentivo para abandonar los combustibles fósiles», predice Jane Burston, directora de Clima y Medioambiente del Laboratorio Nacional de Física del Reino Unido. Paralelamente, Europa se encontró en el centro del comercio de paneles solares baratos y eficientes, ya que los precios de las energías renovables descendieron considerablemente.
Robert Muggah, director de Investigación del Instituto Igarapé, predice que no habrá una sola potencia mundial, sino un puñado de países —entre los que se destacan Estados Unidos, Rusia, China, Alemania, India y Japón— que presentarán tendencias semiimperiales. Sin embargo, al mismo tiempo, el papel del Estado se ve amenazado por otras tendencias, que incluyen el crecimiento de las ciudades.
Según Melanie Walker, una médica y asesora del Banco Mundial, el hospital tal como lo conocemos está en vías de desaparición; habrá menos accidentes gracias a los vehículos autodirigidos y grandes avances en medicina preventiva y personalizada. No habrá escalpelos ni donantes de órganos, sino pequeños tubos robotizados y órganos bioimpresos.
Al igual que nuestros abuelos, no utilizaremos la carne como alimento básico, escribe Tim Benton, profesor de Ecología de Poblaciones de la Universidad de Leeds, Reino Unido. No serán la gran agricultura o los pequeños productores artesanales quienes ganen, sino una combinación de ambos, con alimentos preparados rediseñados para ser más saludables y menos dañinos para el medioambiente y nuestro cuerpo.
Los refugiados sirios con formación académica superior habrán alcanzado la mayoría de edad para el año 2030, y defenderán la integración económica de aquellos que han sido forzados a huir del conflicto. Según Lorna Solís, fundadora y directora ejecutiva de la ONG Blue Rose Compass, el mundo necesita estar mejor preparado para las poblaciones en movimiento, ya que el cambio climático desplazará alrededor de 1000 millones de personas.
«Nos olvidamos de los derechos y libertades que refuerzan nuestras democracias a nuestro propio riesgo», escribe Kenneth Roth, director ejecutivo de Human Rights Watch.
Además, una vez que lleguemos allí, es probable que descubramos evidencia de vida extraterrestre, escribe Ellen Stofan, jefa científica de la NASA. La “gran ciencia” nos ayudará a responder a grandes preguntas sobre la vida en la tierra, así como a abrir aplicaciones prácticas para la tecnología espacial.
What is the place of Foresight and Futures Literacy among economic challenges of the 21st Century? And how economists can make usage of Futures Studies? This time we were presenting the potential of futures thinking in the context of economic transformations and globalization, during the 7th International Scientific Conference “World Economy – Challenges of the 21st Century” that took place in Radom (Poland) on the 24th of November.
The discussion led to the important question: What incentives can we offer to the companies in order to make them future (long-term?) – oriented in the times of strategic thinking defeated by short-termism? The question that may be even more important is: why we still need to ‘sell’ the idea of future orientation?
Short-term orientation is not a new concern in the world’s financial history, but the crisis of 2008-10 made a short-termism issue alive and strongly relevant again. Two hundred days is the time that an average share of the firms in the S&P 500 index stay in “one hands”.
According to FCLT Global 2016 report “Rising to the challenge of short-termism”, it is commonly believed by board members and executives that the short-term pressure is continually growing. 87% of over 1000 surveyed C-level executives and board members (representing the companies from across the world, covering a full range of industries and functions) admit to feel the highest pressure to exhibit strong financial results within two years or less.
Despite the newest research findings by McKinsey Global Institute, showing that long-term companies demonstrate better (stronger and more stable) financial performance, the corporate short-termism seems to do very well across the companies. Not getting to much into details, outperformance of the long-term-oriented organizations is expressed in very important economic measures, to mention average revenue and earnings, economic profit, market capitalization or new jobs creation.
Future-orientation (and strategic planning based on long-term vision) and often the agreement for the resignation from immediate, short-term profits may be difficult and meets stakeholder’s objections. From the other hand the speed and scale of global changes, environmental challenges (including growing scarcity of natural resources and climate change) require new business models and greater flexibility in order to manage the future challenges. It also requires new view at the economic measures for tangible and intangible assets and new look at natural resources and the rationale of homo oeconomicus. It highlights the problem of measurement and assessment of transformations and changes, since emergent and novel phenomena can rarely be the subject of the assessment of existing historical models and variables, in the words of Riel Miller (2015) If the goal is transformation then the kinds of changes that define a ‘successful outcome’ cannot be fully described using yesterday’s metrics.
So, can foresight be a remedy for the short-termism of companies and assist economists in building welfare and sustainable economic development through explaining trends and new economic paradigms? Looks like the first steps are still before us: finding a common language, conceptual apparatus and mutual understanding of methodologies. But definitely these are the steps worth taking. At the end of the day we all have a common goals and look in the same direction – the future.
Los caminos que tomará la inversión en Inteligencia Artificial el 2018
Daniel Fajardo 10/11/2017
Existe un consenso en la industria TI de que la Inteligencia Artifical (IA) será la tecnología top one para el próximo año. Conceptos como big data, asistentes virtuales, cloud e IoT siguen en el podio, pero la mayoría influidos por la IA, tanto a nivel masivo, como en el sector corporativo.
1. El protagonismo de la Inteligencia Artificial inunda a todas las industrias
Claramente, la Inteligencia Artificial (IA) se comenzó a robar todas las cámaras en las tendencias tech el 2017. Para el próximo año, seguirá siendo la protagonista. Actualmente se generan 2.500 millones de gigabytes de datos al día y para el 2020 se esperan 40 zettabytes. Según IDC, en 2018 un tercio de las empresas latinoamericanas adquirirá esta nueva herramienta para procesar información y la inversión en sistemas cognitivos rondará los US$350 millones hacia 2020. “Estamos trabajando en más de 70 proyectos y con 40 empresas distintas, las que se han atrevido a romper con los paradigmas actuales creando organizaciones cognitivas”, comenta, Aldo Marzolo, gerente general de Cognitiva en Chile.
2. Los asistentes virtuales comienzan a insertarse en las empresas
Los asistentes virtuales como Alexa de Amazon, Siri de Apple y Cortana de Microsoft han existido por algún tiempo en el mundo de los consumidores.
Pero ahora están empezando a abrirse camino en el espacio de trabajo “y están ayudando a las empresas a reducir costos mediante la automatización de tareas básicas realizadas previamente por personas o completar las tareas cotidianas con mayor rapidez”, indica Marco Cantamessi, gerente general de Dimension Data Chile. Según un estudio de tendencias 2018 de esta compañía, un 62% de las organizaciones espera que los asistentes virtuales tengan un lugar en sus empresas en los próximos dos años.
3. El big data se potenciará con la computación cognitiva
Según IDC, el crecimiento del big data y soluciones analíticas hacia 2018 será de 33% en infraestructura en la nube, 29% en software, y 29% en servicios. Pero desde Ricoh, comentan que lo digital no es el destino, sino la base para una transformación mucho más profunda. “El crecimiento exponencial del tráfico de datos en términos de velocidad, variedad y volumen presenta un enorme desafío que hoy en día está siendo manejado por los sistemas de big data. Sin embargo, la convergencia de esta tecnología con la computación cognitiva (CC), significará un salto cualitativo en cómo se procesa el inmenso flujo de datos”, indica Crispín Vélez, encargado de Transformación Digital de Ricoh Latinoamérica.
4. La combinación entre realidad aumentada y machine learning
El gigante de logística, DHL, está utilizando con éxito el machine learning (aprendizaje por medio de los datos), IA y la realidad aumentada (RA) en sus operaciones de preparación de pedidos en el almacén mediante el uso de gafas inteligentes. Los lentes colocan un mostrador frente a los ojos del usuario, que le ofrecen instrucciones visuales de los pedidos, la ubicación exacta de las mercancías en el almacén y dónde deben colocarse en el carro.
Según Cantamessi, de Dimension Data, “estamos empezando a ver casos de uso de realidad aumentada que van mucho más allá de las industrias del entretenimiento y el juego, ahora está comenzando a moverse hacia el espacio del consumidor”.
5. El crecimiento de la inversión en los “Analíticos Predictivos”
Otra tecnología que está ganando rápidamente la atención de organizaciones en todo el mundo son los Analíticos Predictivos (AP). De acuerdo con Frost & Sullivan, los ingresos generados globalmente por esta tecnología exhibirán un crecimiento anual compuesto (CAGR) del 25% entre 2016 y 2020, apalancado por la demanda de soluciones de inteligencia de negocios que brinden mayor agilidad y competitividad a las empresas. “Los AP están penetrando los procesos de toma de decisiones de buena parte de las empresas de la lista Fortune 500, permitiendo obtener inteligencia en tiempo real lista para traducirse en acciones concretas y para ofrecer predicciones sobre tendencias y probabilidades futuras”, dice Crispín Vélez.
J’ai le plaisir de présenter depuis 2014 des chroniques du futur dans le revue RH&M. Ces chroniques ont été dédiées en 2014, à l’exploration des contours de la Grande Transition à travers nos attitudes face au changement : les zones aveugles, la simplexité, la worldview et la confiance en l’avenir.
Vous pouvez retrouver, en cette rentrée les deux dernières chroniques du futures 2014 sous la forme d’article LinkedIn. Ci-après la quatrième et dernière chronique du Futur 2014.
De la confiance en l’avenir – Ou la présence des éléphants noirs
Pour franchir la Transition, nous avons besoin de simplexité face à la complexité croissante, de sens face à l’apparente incohérence, de récits pour changer de paradigme. Mais aussi —surtout— d’une nouvelle confiance en l’avenir.
L’ampleur de la Transition qui nous entoure interpelle notre capacité à changer (Chroniques n°2, n°53). Changer de regard sur le monde pour nous forger des interprétations plus proches de la réalité actuelle (Chroniques n°3, n°54). Changer de regard sur nous-mêmes pour affronter notre peur du changement (Chroniques n°1, n°52). Mais il nous faut, aussi, changer d’état d’esprit vis-à-vis du futur.
Business as usual
Le microcosme français — moins de 1% de la population mondiale— semble s’être enfermé dans une vision de l’avenir blasée, si étroite qu’elle en fige la dynamique même. L’avenir ne serait ainsi plus qu’un éternel recommencement, «more of the same» (plus de la même chose) ou «business as usual» (tout comme d’habitude). La préservation de nos acquis, l’enracinement dans l’histoire, la crispation sur des futilités sont autant de symptômes d’une société qui refuse de considérer le futur avec bienveillance.
Derrière cette peur manifeste du changement, se niche, profondément enfoui, un manque de confiance en l’avenir qui laisse perplexe. Car il nous renvoie en fait à un manque de confiance en nous-mêmes, nous, ce peuple français jugé si manifestement arrogant par les autres cultures. Est-ce parce que, sans l’intervention américaine, nous aurions perdu la Seconde Guerre Mondiale ? Mais les Britanniques aussi, et leur appétence pour l’avenir est demeurée intacte. Est-ce parce que l’existentialisme a si massivement supplanté l’humanisme ? Mais en Allemagne aussi, et leur avancée vers le futur est continue. Parce que nous serions Latins ? Les Italiens aussi, mais ils embrassent le futur. D’où vient alors cette frilosité d’une culture qui semble vouloir arrêter sa course évolutive vers l’avenir ?
Des éléphants noirs…
L’expression «éléphant noir» résulte de la conjonction de deux expressions anglo-saxonnes : «un éléphant est assis dans la pièce» —qui signifie que tout le monde voit l’éléphant mais fait comme s’il n’existait pas (the elephant sitting in the room)— et «un cygne noir» — qui désigne un événement extrêmement improbable mais à très fort impact (black swan). Elle qualifie un événement extrêmement probable, largement annoncé, mais que l’on choisit délibérément d’ignorer[1]. A l’inverse d’une zone aveugle (cf. Chroniques du futur n°1, n°52) qui nous empêche de voir ce qui existe, nous voyons bien l’éléphant noir, mais nous décidons de ne pas en tenir compte.
Parmi les exemples les plus frappants : l’éducation dont le contenu n’est plus adapté aux besoins actuels, le changement climatique qui devrait imposer de nouvelles pratiques, l’automatisation qui menace les «cols blancs»[2], la marchandisation de la monnaie qui a atteint ses limites. Mais rien ne change vraiment : on ignore les éléphants noirs assis au milieu de notre monde.
Cependant jamais la période n’a été aussi propice aux changements. Un monde en transition, tel que le nôtre, est riche en Volatilité, Uncertitude, Complexité et Ambiguïté (VUCA). Une telle fluidité, bien que chaotique, favorise les dynamiques de changement : les opportunités sont aussi nombreuses que les risques. Mais nous ne les voyons pas parce que, tel un gros nuage sombre, l’éléphant noir n’évoque que la menace d’un orage, et non la pluie bénéfique. On croise les doigts en attendant qu’il passe, espérant que le choc du changement aura lieu ailleurs, dans l’espace (autres pays) ou dans le temps (générations futures).
L’optimisme méthodologique
Il est temps de se resaisir. Déjà, outre-atlantique, le concept de «temps postnormaux» (postnormal times) a fait son apparition. Il pose que, pour nous frayer un chemin à travers la complexité (la situation en Syrie par ex.), le chaos (la crise financière mondiale résultant de celle des subprimes américaines) et les contradictions (telles que le développement générant une inégalité croissante entre riches et pauvres), nous devons donner non seulement du sens au monde qui nous entoure, mais un sens positif[3]. La carte devient nécessairement fausse dans un monde de plus en plus étrange[4] : seule la boussole compte, éthique, prospective, humaniste ; la boussole qui nous indique le cap à suivre.
De la littérature utopique nous ne retenons généralement que les dystopies, ces scénarios-catastrophes qui nous conduisent à l’enfer sur Terre, ou, plus radicalement aujourd’hui, à la disparition de l’espèce humaine. Nous serions fort avisés de faire plutôt porter les programmes scolaires de littérature sur les eutopies, ces lendemains qui chantent que nos technologies et nos savoirs mettent plus que jamais à notre portée… si nous voulons bien nous donner la peine de les construire, plutôt que de nous lamenter sur notre sort.
[2] GOUX-BAUDIMENT Fabienne, RAYNAUD-LACROZE Paul-Olivier, «Le DRH et le Robot», in Edgar ADDED et alii, DRH Le choc des ruptures, Paris : Manitoba/Les Belles Lettres, 2014, pp. 225-231.
[3] SARDAR Ziauddin, «Welcome in Postnormal Times», Futures, n°42, 2010, pp. 435–444
from ‘Design for Human and Planetary Health’ D.C. Wahl 2006
Visioning is more than painting an idealistic picture of the future — it is a process of evaluating present conditions, identifying problem areas, and bringing about a community wide consensus on how to overcome existing problems and manage change. By learning about its strengths and weaknesses, a community can decide what it wants to be, and then develop a plan that will guide decisions towards that vision. … Having a shared vision allows a community to focus its diverse energies and avoid conflicts in the present as well as the future. — Sandler, 2000, p.216
The essence of the design process is to envision novel solutions in order to meet certain real or perceived needs and express a certain intention through novel interactions and relationships.While science tends to focus on how the world is and how it came to be — an essentially backward looking activity that may venture to predict the outcome of experiments based on abstract linear extrapolations from past observations — design tends to focus on how the world could be in the future and proposes feasible pathways to create such a future.
In 2005, the UK Design Council published a report on Sustainability & Design. The report admitted the urgent need to re-contextualise design theory and practice in a more holistic and encompassing way that acknowledges the complexity of challenges associated with creating a sustainable society. It identified a wide range of specific skills that are important for designers in the 21st century. This thesis has addressed almost all the skills mentioned in the report, for example: the need for trans-disciplinarity, multiple perspectives, eco-literacy, dialogue and communication, sensitivity to different scales and the need to reconsider environmental ethics.
After interviewing a wide range of people engaged in mainstream product design as well as a number of sustainable product designers, the authors of the Design Council report offered the following summary of essential design skills (see Box 6.1). The ability to vision is the last but certainly not the least important skill on their list.
Any design strategy is useless if there is no clear vision of where that strategy is supposed to take us. The process of creating a collective and trans-disciplinary vision for a future of human, societal, ecosystem and planetary health will emerge as the central means of catalysing the transformation towards a sustainable human civilization during the 21st century. This process will define the quality of life and meaningful existence of current and future generations.
The process of collective visioning based on an integration of multiple perspectives will be central to the creation of locally adapted sustainable communities that cooperate locally, regionally and globally in order to meet true human needs for everyone and within the biophysical limits of local ecosystems and the global biosphere. It is through this community based process of life-long learning and dynamic adaptation of our guiding visions that design will be able to act as trans-disciplinary and trans-epistemological integrator and facilitator (see also chapter one).
“Visioning processes provide a mechanism whereby diverse interests are brought together to develop and reach agreement on a common, preferred vision for the future of an area and/or community” (Baxter & Fraser, 1994). Visioning is therefore centrally important for a community-based approach to designing humanity’s appropriate participation in natural process.
… the transition towards sustainability in its everyday dimension, can be described as follows: in a short period billions of people must redefine their life projects. Although differing greatly, the new directions they can and will want to take have a common vector — one which should take us in all our diversity towards a sustainable future. — Manzini & Jegou, 2003
The intention to increase human and planetary health, as the prerequisite for long-term sustainability, describes the common vector that unites the diversity of locally and regionally adapted human communities and societies behind the common goal of sustaining the continued evolution of life and consciousness through turning the vision of a sustainable human civilization into reality.
While the now increasingly outdated goals that motivated conventional science during the past three hundred years were chasing after the impossible utopia of total prediction and control of nature, the new sciences and the emerging natural design movement are motivated by improving and informing humanity’s appropriate and sustainable participation in natural process. This is an attainable utopia, a vision that we can turn into reality!
The central shift is one from prediction through abstract and linear models based on quantities and dualistic reasoning, to a more comprehensive envisioning of a future of appropriate participation in natural process based on multiple perspectives and epistemologies. By acknowledging the validity of contributions made by various perspectives, the latter approach transcends and includes the former! Jonathan Ball, in his PhD thesis entitled Bioregions and Future State Visioning, provides a very succinct explanation of the difference between prediction and visioning:
There are several ways of looking at the future but two methods predominate. The first is by prediction and the second is ‘visioning’. Prediction is, perforce, based on extrapolation of past trends. Through this process the future can only be viewed as though along a corridor of constraining possibilities. The corridor might widen along its length but the process of prediction is essentially a restrictive one. Visioning, on the other hand, is a process that begins with the desired future state and then looks backwards to the present (building a new corridor between the states). Visioning is a tool that, under various guises, has been developed by the business community to help corporate planning. The present state can be a difficult barrier to what could be — the future state (Stewart, 1993). Therefore, visioning is radically different from conventional futurology which is predictive, prophetic and tends to offer pictures of exaggerated optimism or pessimism. — McRae, 1994, in Ball, 1999, pp.62–63
Victor Margolin believes: “As an art of conception and planning, design occupies a strategic position between the sphere of dispositional ethics and the sphere of social change. This is its power.” He argues: “Design is the activity that generates plans, projects, and products. It produces tangible results that can serve as demonstrations of, or arguments for, how we might live” (Margolin, 2002, p.88). Design is the process of envisioning and creating our collective future.
It is important to understand that in the process of creating a vision of a sustainable community, society, and civilization we should not be restricted by what may be perceived as insurmountable obstacles to achieving that vision. The initial formulation of a vision has to be idealistic, creative, poetic, aesthetic, ethical, intuitive and imaginative. Rational reasoning from a particular perspective should not restrict the integrative and participatory process of creating the initial vision.
First, the best-case scenario, the ‘have our cake and eat it’ option, the win-win-win optimal future state has to be clearly described and en-visioned. This creates a collective goal desirable to everyone and therefore provides the basis for engaging the participation of diverse stakeholders in the long-term process of turning such a vision into reality through appropriate design.
Baxter and Fraser see the value of creating a vision in the way it connects the future and the present. First, a vision helps us to put our current behaviour into context and perspective, and second, it “catalyses new actions and partnerships in order to move the community or organization towards the future it wants” (1994, p.4). They identify six main characteristics of visioning which make it a uniquely useful process. These are summarized in the table below(see Table 6.1).
Only by honouring the entire breadth of diverse intellectual and cultural perspectives and by acknowledging the important, valid and meaningful contributions of complementary — but possibly contradictory — epistemologies can we hope to create a meaningful and inspiring vision that has the power to motivate all of humanity to engage in the transformation towards a sustainable human civilization.
The scientific, materialistic perspective that, through the emerging holistic sciences, is increasingly acknowledging fundamental interconnectedness, interdependence and unpredictability, provides important insights about the dynamics of complex systems like societies, ecosystems and the biosphere. Ecology and complexity theory can help us to participate appropriately in natural process.
However subtler modes of consciousness, that are aware of our participatory and co- creative involvement in both the material and immaterial dimensions of reality, are also important informants of such a vision. Any globally and locally inspiring and meaningful vision, by definition, will have to include contributions from diverse spiritual, ethical, psychological, cultural and aesthetic, as well as scientific points of view.
The globally transformative vision of a sustainable human civilization has to be flexible and adaptable enough to accommodate healthy expressions of an enormous diversity of material and immaterial (internal and external) perspectives. At the same time it has to establish a realistic, socially and ecologically literate consensus about how to proceed in order to implement this collective global vision through the action of empowered and locally adapted communities everywhere.
The vision of a sustainable human civilization must be meaningful enough to be desired by everyone. So much so, that it motivates all global citizens to engage in local, regional, and global cooperation in driving the long-term process of turning this vision into reality.
Jonathan Ball’s doctoral research reviewed a variety of different approaches to creating community based visions and developed a conceptual framework for applying environmental visioning to land-use planning and bioregional design. Ball (1999) identified a number of common characteristics and steps of visioning as a tool for designing meaningful and desired futures intentionally. The Table below (see Table 6.2) shows a summary of three related but differently focussed approaches to the visioning process, as provided by Jonathan Ball.
This multiple and complementary perspective on the appropriate steps that should be applied within a successful visioning exercise provides a more integral understanding of visioning as a potentially powerful tool for sustainable design. The Box below summarizes five common characteristics for the design and realization of successful visions as proposed by Jonathan Ball (see Box 6.2).
The global vision of a sustainable human civilization will motivate and be composed of a wide diversity of regional and local, community-based, visions. Empowered local communities will be the active agents of change that will implement sustainability through appropriate participation in natural process. Such communities will act collectively at the appropriate scale of local adaptation to ecosystems and regional self-reliance and sustainability, and simultaneously cooperate internally and externally in the process of facilitating the realization of this vision locally and globally.
Alan Sandler emphasizes the inherent potential for the visioning process to act as a driver for transformation towards sustainable practices. A community-based, inclusive and participatory approach “in which members share their personal vision and shape them into a shared vision providing energy, coherence and direction for the communities’ diverse programs and services.” Sandler defines vision as “an idea or image of a desirable future which captures the commitment, energy and imagination of key people in working towards its realization” (Sandler, 2000, p.218). The Box below summarizes a set of “tips for vision building” compiled by Alan Sandler (see Box 6.3).
Throughout this thesis, I have repeatedly emphasized the important role of an actively engaged and socially and ecologically literate citizenship in the community based process of creating locally adapted, sustainable communities. Working towards the realization of an inspiring and desirable vision motivates such active engagement.
The process of visioning is, on the one hand, an effective way to engage the whole community and its diverse stakeholders in the process of defining what a desirable and sustainable future would look like. On the other hand, attempting to realize a vision provides the basis for the continuous learning process that informs the community about the appropriateness of the strategies it chooses to implement the collective vision.
An effective vision has to be clear, inclusive, and desirable enough to inspire widespread participation in its implementation and at the same time flexible and adaptable enough to be able to respond appropriately to new insights and environmental or technological change. Adam Kahane emphasizes:
A problem that is generatively complex cannot be solved with a prepackaged solution from the past. A solution has to be worked out as the situation unfolds, through a creative, emergent, generative process. — Kahane, 2004, p.101
There have been a variety of distinct but complementary approaches to working with the visionary aspects of the design and planning process within more or less inclusive communities. Scenario planning, as described by Peter Schwartz in The Art of the Long View (Schwartz, 1991), future workshops (see Jungk & Müllert, 1987), and future search (Weisbord & Janoff, 1995) are worth exploring in this context. Baxter and Fraser (1994) discuss the differences between visioning and forecasting or scenario planning in more detail. The scope of this thesis does not allow me to enter deeper into these issues, which will provide points of departure for future research.
The actual methodologies that can facilitate successful visioning as well as the flexible and adaptive implementation of established visions through widespread and appropriate participation are clearly of central importance in the transformation towards sustainability. Chapter one already emphasized this through the discussion of the role of trans-disciplinary design dialogue and tools like non-violent communication, mediation and consensus decision making. The Spiral Dynamics approach offers one methodology for helping people to cooperate despite differences in their dominant worldview or value system (see chapter one).
In Solving tough problems, Adam Kahane, a founding partner of ‘Generon Consulting’ and the ‘Global Leadership Initiative’ offers a variety of tangible examples of how such trans- disciplinary, inclusive and participatory design processes are already being employed to find appropriate solution (see Kahane, 2004). He emphasizes the importance of personal openness to change, learning and new and transformative insights.
There is a story about a man who wanted to change the world. He tried as hard as he could, but really did not accomplish anything. So he thought that instead he should just try to change his country, but he had no success with that either. Then he tried to change his city and then his neighbourhood, still unsuccessfully. Then he thought he could at least change his family, but failed again. So he decided to change himself. Then a surprising thing happened. As he changed himself, his family changed too. And as his family changed, his neighbourhood changed. As his neighbourhood changed, his city changed. As his city changed, his country changed, and as his country changed, the world changed. — Kahane, 2004, p.131
The anatomy of change is holarchical, with changes on each level affecting changes on all other levels. In order to affect change effectively we have to begin with ourselves. Like Don Beck and Christopher Cowan, who developed Spiral Dynamics (see Beck & Cowan, 1996), Adam Kahane contributed to the peaceful transition from South Africa’s apartheid regime to a democratically elected government through facilitating conciliatory workshops that helped to shape a collective vision for the future.
Kahane asks the important questions: “How can we solve our tough problems without resorting to force? How can we overcome the apartheid syndrome in our homes, workplaces, communities and countries, and globally? How can we heal our world’s gaping wounds?” (Kahane, 2004, p.129). How can we participate in salutogenesis?
The answer lies in collectively engaging in trans-disciplinary and trans-epistemological dialogue that allows us to see issues from various points of view and therefore allows us to integrate different kinds of knowledge into a more collective, inclusive and integral wisdom that can guide appropriate participation and inform the process of turning the vision of a sustainable human civilization into reality.
Kahane proposes: “We have to shift from down-loading and debating to reflective and generative dialogue. We have to chose an open way over a closed way.” He believes that when we make “this simple, practical shift in how we perform these most basic social actions — talking and listening — we unlock our most complex, stuck problem situations. We create miracles” (Kahane, 2004, p.129).
Such miracles, based on trans-disciplinary and trans-epistemological dialogue, are necessary in order to create the attainable utopia of a sustainable human civilization. The Box below summarizes a number of suggestions made by Kahane about how we can facilitate the dialogue about tough problems (see Box 6.4). In chapter one, I proposed that the creation of a sustainable future for humanity is the ‘wicked problem of design’ in the 21st century. The list below offers advice on how each one of us can participate in the process of offering appropriate solutions to this wickedly complex problem.
The ability to participate in such a way in collective decision making processes and collaborative problem solving should be nurtured and practiced in all formal and informal education. It is a crucially important skill for responsible citizens in the 21st century.
Kahane (2004) describes and contrasts a ‘closed way’ of trying to solve problems from within a limited perspective and resisting any other approach, and an ‘open way’ of creating solutions to tough problems by acknowledging their full complexity and by integrating multiple perspectives. The latter creates and informs the vision of a sustainable human civilization.
Every one of us gets to choose, in every encounter every day, which world we will contribute to bringing into reality. When we chose the closed way, we participate in creating a world filled with force and fear. When we choose on open way, we participate in creating another, better world. — Kahane, 2004, p.32
Many different formulations of what a sustainable human civilization may look like will have to be proposed in order to provide a broad basis for the dialogue by which we can establish a basic consensus about how to proceed at the local, regional, national and global scale.
A scale-linking conceptual framework that allows us to integrate diverse issues and address issues in different ways on different scales will hopefully facilitate and structure trans- disciplinary dialogue. Just as the map of value-systems and worldviews provided by Spiral Dynamics allows us to give validity to a variety of different perspectives, salutogenesis and health describe the most fundamental intentionality and goal of sustainability.
I believe we can accomplish great and profitable things within a new conceptual framework: one that values our legacy, honours diversity, and feeds ecosystems and societies … It is time for designs that are creative, abundant, prosperous, and intelligent from the start.
— William McDonough (in Hargroves & Smith, 2005)
I will use the remainder of this exploration of the role of vision in design to introduce a variety of different formulations of hopeful visions of sustainability and the strategies of appropriate participation they propose. By setting these different visions side by side, just like I have set the different approaches to sustainable and ecological design side by side, I hope to open a space in which underlying patterns become clear and a multi-facetted vision of a sustainable human civilization and the appropriate pathways towards that vision can emerge.
The Australian sociologist Ted Trainer has suggested that we need to shift from a society of consumers to a society of conservers. In his opinion, a sustainable society would distinguish itself through much greater self-sufficiency at the community and regional scale; people would live more simply, but have a higher quality of life; they would cooperate to create more equitable and participatory communities, and they would need to create a new economic system. He also recognizes that for this shift to occur, a fundamental reorientation and change of value system is needed (Trainer, 1995, pp.9–15). To illustrate his vision, Trainer compiled an instructive list of design characteristics that would guide the creation and re-design of settlements in such a conserver society (see Box 6.5).
In the recent 30 year up-date of the seminally influential book Limits to Growth, its authors explain: “Visioning means imagining, at first generally and then with increasing specificity, what you really want … not want someone has taught you to want, and not what you have learned to be willing to settle for.” They propose: “Vision, when widely shared and firmly kept in sight, does bring into being new systems” (Meadows et al., 2005, p.272).
Within the limits of space, time, materials, and energy, visionary human intentions can bring forth not only new information, new feedback loops, new behaviour, new knowledge, and new technology, but also new institutions, new physical structures, and new powers within human beings (Meadows et al., 2005, p.273).
Meadows et al. conclude that “a sustainable world can never be fully realised until it is widely envisioned.” They emphasise: “The vision must be built up by many people before it is complete and compelling” (Meadows et al., 2005, p.273). The Box below summarizes how Meadows et al. suggest we may begin the process of envisioning a sustainable society (see Box 6.6).
Their proposed vision revisits many of the issues discussed in this thesis. My intention has been to provide the reader with a trans-disciplinary synthesis of a wider vision that is already emerging along with the emergence of the natural design movement. Planners, designers, politicians, economists, scientists, philosophers, social activists, educators, and business people everywhere have already begun the long process of defining the vision of a sustainable and therefore equitable future for everyone — a future of human and planetary health.
In putting the different but already existing formulations of such a vision side by side, I have demonstrated that there is a significant amount of overlap between the goals and solutions proposed within the different disciplines. From within each discipline, different pieces of the bigger puzzle are added. Each one of them strengthens the overall vision and the various contributions mutually reinforce each other in the creation of a synergetic and powerful ‘leitmotiv’ for turning the vision of a sustainable human society into reality.
Whether we take responsibility or not, we can’t but participate in the creation of the world around us through our attitudes, actions and designs. Our dreams and aspirations, every interaction we participate in, everything we think, say and do exerts a creative power on the world around us and as the world changes in accordance, so do we.
We are continuously in danger of imprisoning ourselves in the walls of our own mental constructs, our guiding stories and ‘scientific theories.’ We collectively create the living and transforming myth of who we are in relation to each other, the community of life, the planet and the universe and this myth becomes our reality. Such is the power of meta-design!
Design is the expression of intentionality through interaction and relationships. Intentionality forms through our processes of meaning making, our value systems and the worldviews we employ. The basis of sustainability is to become conscious of this and choose appropriate participation in this creative process instead of reinforcing unsustainable patterns through our daily actions, while referring responsibility to somebody else.
True, long-term sustainability is possible only if more and more people become fully conscious of our individual and collective creative powers and assume responsibility for their own participation in the process of sustainability, through cooperation with the community of life. Awareness of our fundamental interconnectedness and interdependence with all of life spawns the realization that we cannot maintain human, community, or societal health without maintaining the health of ecosystems and the planet as a whole.
Thomas Greco Jr. beautifully expressed the enormous potential this insight has for individual and community empowerment. His vision of human potential is reproduced in the Box below (see Box 6.7).
What Greco describes is a realization that more and more people are having everyday. It is in this realization that true sustainability can take root. But the process of transformation can only be sustained if we begin to act in accordance with our insights.
At the international level there have been a number of previous attempts to formulate visions of a sustainable future. In 1948, the General Assembly of the United Nations proclaimed the adoption of the ‘Universal Declaration of Human Rights’ (see Bloom 2004, pp.253–260 for a reproduction). In 1986, the World Health Organization published the ‘Ottawa Charter for Health Promotion’ (see Brown et al., 2005, pp.101–105). In June 1992, after a conference in Rio de Janeiro, the United Nations published a ‘Declaration on Environment and Development’ (see Brown et al., 2005, pp.112–117 for a reproduction). This was followed by the publication and international adoption of ‘Agenda 21’ as a blueprint for a social, economic,and environmental sustainability [since this thesis was published in 2006 the SDGs and Agenda 2030 were launched in 2015 as a continuation of the UN sustainable development commitment].
The most widely inclusive and comprehensive document of this kind that has been published to date was developed over almost a decade of worldwide consultation and dialogue through the support of the ‘Green Cross’, founded by Michael Gorbachov and the ‘United Nations Educational, Scientific and Cultural Organisation’ (UNESCO). The Earth Charter, was published in 2000, and is structured around the following basic principles: respect and care for the community of life; ecological integrity; social and economic justice; and democracy, non-violence, and peace (see www.earthcharter.org ).
Since its publication the vision of global sustainability, equity, justice and peace formulated in the Earth Charter has been adopted by an increasing number of national and international organizations. It will hopefully provide a basis for fruitful discussion about the necessary local, regional, national, and international dialogues about how to effectively implement such a vision of a sustainable human civilization.
Let ours be a time remembered for the awakening of a new reverence for life, the firm resolve to achieve sustainability, the quickening of the struggle for justice and peace, and the joyful celebration of life. — The Earth Charter, in Jack-Todd, 2005, p.131
The multi-facetted challenges that humanity is facing at the beginning of the third millennium are sending a clear signal: business as usual is no longer an option. The world will change even more drastically during the 21st century than it has done during the 20th century. If we allow this change to be driven by narrowly conceived economic and national interests and disregard global interconnectedness and interdependences as well as our reliance on the planet’s ecological life- support systems, we will do so at an unprecedented cost in the lives of humans and other species with whom we are co-inhabiting this fragile planet.
In 1991, Ralph Metzner, a psychologist at the California Institute of Integral Studies, published an article entitled ‘The Emerging Ecological Worldview’ in Resurgence. Metzner tried to formulate the major changes in worldview and humanity’s way of participating in natural process that will be associated with the transition towards an ‘ecological age’ and a sustainable human civilization. The Table below summarizes his vision (see Table 6.3).
The ecological worldview formulated by Metzner should not be understood as a dualistic opposite to the dominant worldview of the industrial age, rather as an expression of a necessary and healthy evolution of humanity towards a more holistic or integral consciousness that is able to embrace multiple perspectives. Beyond such an ecological worldview lies the integration of old and new modes of consciousness in what might be called an integral or holistic worldview able to transcend and include what came before (see also chapter one).
In 2000, John Todd was invited by the Schumacher Society UK to give the annual Schumacher lecture in Bristol. The title of his presentation was ‘Ecological Design in the 21st Century.’ He ended his speech with a formulation of a vision that will hopefully inspire all global citizens to engage in the design of our collective future:
I have learned that it is possible to design with Nature. I have also learned that, through ecological design, it is theoretically possible to have a high civilization using only one tenth of the world’s resources that industrial societies use today. We can reduce the negative human footprint by ninety percent and thrive as a culture. We do not have to destroy the Earth. Ecological design allows us to link human life support systems in a symbiotic way to the rest of the biosphere. Nature, or Gaia, can regain her wilderness and the air, water, and lands can be free of our poisons. That is the vision. That is the possibility.
03 de junio 2017 , 12:00 a.m. (El TIEMPO http://m.eltiempo.com/opinion/columnistas/adriana-la-rotta/reescribir-el-futuro-imaginar-el-futuro-94966)
El pasado no lo vamos a cambiar, pero sí podemos torcerle el brazo al pesimismo.
Un texto reciente de Martin Seligman, un investigador de la Universidad de Pennsylvania a quien se lo conoce como el padre de la psicología positiva, me ha parecido muy revelador. Es un ensayo corto –basado en décadas de estudios– según el cual entre las cosas que separan a los humanos de los animales está algo que la comunidad científica no ha estudiado lo suficiente: nuestra capacidad de contemplar el futuro. De acuerdo con Seligman y otros de sus colegas, existe la percepción de que los individuos gastamos enormes cantidades de tiempo pensando y lidiando con el pasado. Pero lo que la ciencia está descubriendo es que en realidad pasamos mucho tiempo pensando en el futuro y, específicamente, imaginándonos el futuro.
La parte que me pareció más intrigante de la propuesta de Seligman, que está dirigida a otros psicólogos pero también a gobiernos y a diseñadores de políticas públicas, es que hay que mirar menos el pasado de las personas y enfocarse más en la visión distorsionada que algunas, o muchas de ellas, tienen de su propio futuro.
Quienes han sufrido traumas, escribe Seligman, tienen una perspectiva desalentadora del futuro, y esa perspectiva es la causa de sus problemas, no los traumas que sufrieron. En otras palabras, quienes se imaginan un futuro con muchos riesgos y pocos escenarios positivos son propensos a la ansiedad, y no al contrario, como normalmente se piensa. Lo genial de esta teoría es que significa que uno puede intervenir en el futuro, en lugar de seguir atribuyéndoles al pasado y al presente, sobre los cuales uno no tiene ningún control, un poder desmesurado.
Lo que la ciencia está descubriendo es que en realidad pasamos mucho tiempo pensando en el futuro y, específicamente, imaginándonos el futuro.
Aquí me voy a permitir una nota personal que explica seguramente por qué la teoría de Martin Seligman me parece válida e importante a nivel individual y especialmente a nivel colectivo. Yo perdí a mi madre cuando era niña, y no puedo decir que ese episodio haya determinado mi futuro, por más traumático que haya sido. Lo que sí me creó fue un reflejo involuntario, un sesgo pesimista y a menudo risible que hace que cuando contemplo el futuro no vea el horizonte soleado y prometedor, sino los negros nubarrones que amenazan convertirse en terrible tormenta. Una gran amiga lo define como la capacidad infalible de encontrar el punto negro en la sábana blanca. El problema no es el pasado. El problema es la incapacidad de imaginarse un futuro mejor.
Ahora bien, ¿es posible que ese fenómeno que aqueja a individuos que han pasado por experiencias dolorosas se extienda a toda una sociedad o a todo un país? Francamente, no veo por qué no sería así.
Más de cinco décadas de trauma han dejado en Colombia no apenas cicatrices, sino heridas que siguen abiertas. Recuperar la memoria, procesar lo ocurrido, encontrar justicia y reparación son todos aspectos importantes para avanzar. Pero ¿acaso esa idea de futuro catastrófico que se percibe en el ánimo colectivo y que amenaza con arreciar a medida que se calienta la campaña presidencial no es justamente eso: una idea producto de nuestra incapacidad de imaginarnos un futuro mejor?
El pasado no lo vamos a cambiar, pero sí podemos torcerle el brazo al pesimismo, admitiendo que existe un sesgo que casi con seguridad distorsiona lo que vemos por delante. Se trata de reescribir el futuro, haciendo que nuestra imaginación colectiva que hoy está poblada de peligros también les abra espacio a los escenarios positivos.
Como a cualquier investigador, a Martin Seligman le han salido contradictores que ponen en duda sus hallazgos y los tildan de autoayuda. Aunque así fuera, en todo caso me parece que es el tipo de ayuda que estamos necesitando.
ADRIANA LA ROTTA
Tomado de http://m.eltiempo.com/opinion/columnistas/adriana-la-rotta/reescribir-el-futuro-imaginar-el-futuro-94966
La expansión urbana, la demanda de producción agrícola, la necesidad de evolución en la gestión política y el cambio climático configuran un momento clave en el avance de los países latinoamericanos que dependen como nunca del agua. Lo explicó Sergio Bitar, ingeniero y ex ministro chileno, en el ciclo de conferencias “Agua y metrópolis” organizado por la Fundación We Are Water y Casa Amèrica Catalunya.
“Latinoamérica tiene grandes desafíos y enormes potencialidades, pero todo depende del agua. Ésta es la máxima prioridad para afrontar el futuro”, así comenzó la charla “La acción política en la crisis del agua en Latinoamérica” impartida por Sergio Bitar dentro del ciclo de conferencias Agua y metrópolis, organizado por la Fundación We Are Water y Casa Amèrica Catalunya que se celebró el pasado 4 de mayo en el Roca Barcelona Gallery. El ingeniero y político chileno, ex ministro de Minería y Educación respectivamente bajo los gobiernos de Salvador Allende y Michelle Bachelet, es el director del programa Tendencias Globales y el Futuro de América Latina del Inter-American Dialogue, y presidente de la Fundación por la Democracia.
Bitar es uno de principales promotores latinoamericanos de estrategias compartidas entre el sector público y privado para garantizar el derecho al agua y su uso eficiente. Mostró la situación actual de Latinoamérica ante las grandes tendencias socioeconómicas, como son el advenimiento de nuevas tecnologías y el poder incuestionable de los recursos naturales como generadores de riqueza. Estos factores coexisten con el enorme y desigual crecimiento demográfico en el mundo, la evolución imparable de las grandes ciudades, la amenaza del cambio climático y el inevitable empoderamiento ciudadano, que es un factor clave para el éxito de cualquier estrategia sostenible.
Sergio Bitar, durante la conferencia, en el Roca Barcelona Gallery.
Latinoamérica depende como nunca del agua
El ex ministro chileno expuso con claridad cuáles son los desafíos de gobernabilidad, gestión y financiación a los que se enfrentan los países latinoamericanos, y la importancia de lograr la participación ciudadana, especialmente la de los pequeños agricultores que son claves respecto al agua.
El primero es el alto nivel de urbanización que alcanza el 80%, el más alto del mundo, y genera problemas de gestión del agua en las grandes ciudades: “México, Sao Paulo, Río y Lima han tenido recientemente graves problemas de escasez, siendo ciudades que se sitúan en países de un enorme potencial hídrico, como por ejemplo la zona amazónica de Perú y Brasil. En Chile, por ejemplo, tenemos las zonas del sur que tienen 1.000 veces más agua por habitante que las del norte. El agua está muy mal distribuida en Latinoamérica”.
En segundo lugar, Bitar señaló la especial situación de Latinoamérica en un mercado mundial de alimentos que bascula hacia el Pacífico a causa del constante incremento de la demanda de China, India y el resto de economías con clases medias emergentes. “Los productos agrícolas son grandes consumidores de agua – comentó -, pero si no hay mejora de la productividad, ¿de dónde sacaremos el agua si la demanda aumenta como está previsto? Latinoamérica tiene que hacer un esfuerzo enorme en la gestión y gobernabilidad del agua, en el uso eficiente de las tierras de cultivo y en biotecnología para afrontar este nuevo mercado”.
Bitar, que el pasado año recibió el premio “Ingeniero 2016” otorgado por el Colegio de Ingenieros de Chile, entró de lleno en la problemática de su país, que se enfrenta, como el resto de Latinoamérica, a la gran amenaza del cambio climático. El calentamiento se manifiesta de una forma especialmente notable en la cordillera andina: «Estamos experimentando una subida de las temperaturas que ha provocado que la isoterma 0º haya ascendido hasta los 3.000 metros de altura, por lo que ha desaparecido la reserva de nieve que abastecía a las ciudades de forma gradual con el deshielo; y el agua, que antes descendía en días, ahora lo hace en horas cuando llueve, provocando avenidas muy violentas que nos obligan a rediseñar los puentes y las canalizaciones».
El cambio climático, amenaza directamente a Chile con sequías e inundaciones, y es uno de los factores que mayor incertidumbre provoca para lograr los objetivos económicos al comprometer el uso del agua e incrementar los fenómenos violentos. “Hemos constituido un equipo de investigación sobre desastres naturales – comenta Bitar -. Chile es un país muy avanzado en cuanto a desastres sísmicos, pero los aluviones son nuevos para nosotros, así como los incendios forestales: tuvimos el pasado febrero uno de los mayores incendios del planeta, que calcinó 600.000 ha de bosques. Tenemos que avanzar mucho más en prevención».
Cambios constitucionales e institucionales imprescindibles
Para que Chile pueda seguir avanzando, Bitar considera como acciones prioritarias un cambio constitucional e institucional, una mejora en la productividad respecto al agua, y la inversión en obras e investigación. Citó algunos proyectos como el de un trasvase del agua sobrante de los ríos del sur a las zonas áridas del norte, y otros de desalinización por energía solar. También señaló la importancia de los proyectos de reciclaje del agua que serán determinantes en toda Centroamérica y Sudamérica.
El país latinoamericano se encuentra, según Bitar, en un momento clave respecto al agua, después del proceso de privatización realizado durante la pasada dictadura: «El agua es un derecho humano que el Estado y la sociedad tienen que garantizar. Ahora, en Chile, nos preocupamos por este problema que antes nadie consideraba: el Estado entrega este derecho como una concesión renovable y el debate que tenemos es complejo: ¿Qué condiciones deben ponerse para las concesiones; y qué atribuciones tiene el Estado para priorizar el consumo humano en caso de crisis? Estamos trabajando en ello y no es fácil, pues muchas veces los derechos que se entregan superan el agua disponible”.
El experto chileno señaló que, como en España, existe una gran dispersión institucional en el tema del agua en Chile: “El país tiene 101 cuencas y necesidades que provienen de diferentes sectores: la minería, la industria, la agricultura… ¿Quién decide? ¿Quién coordina? Es preciso un cambio institucional para coordinar las múltiples voces que intervienen en la determinación de las necesidades del agua”.
Bitar finalizó señalando la importancia de la concienciación ciudadana en todos los procesos del agua: “Es imprescindible que los ciudadanos sepan que el agua es un derecho humano, sepan de la importancia del agua para su casa para la agricultura y para el desarrollo de la sociedad en la que viven. Sólo así podremos seguir investigando y encontrando nuevas soluciones”.
What scientific discoveries will 2017 bring? What technological innovations? Probably not time travel — or time-shares on Mars. But no one really knows for sure, and when we asked some of the biggest names in in science and technology to share their predictions for the coming year, there was a bit of pushback.
«I normally don’t make predictions for anything less than two trillion years in the future,» Arizona State University cosmologist Lawrence Krauss told NBC MACH. It’s easier to make predictions that far out, he added jokingly, when «no one will be around to check them.»
Ultimately, Krauss came through with some fascinating forecasts. Read on to see them, along with predictions from legendary astronaut Buzz Aldrin and nine more thought leaders in science and tech (the submissions have been lightly edited).
Buzz Aldrin Christina Korp / Christina Korp
Buzz Aldrin:
A New «Race for Space»
Dr. Buzz Aldrin, the second human to walk on the moon, is a leading advocate of space science and planetary exploration. He is the co-author of several books, including «Mission to Mars: My Vision for Space Exploration» and «No Dream Is Too High: Life Lessons From a Man Who Walked on the Moon.» He lives in Satellite Beach, Florida.
Given President-Elect Trump’s interest in putting in place a space council, I envision a more unified approach to shaping and overhauling aspects of America’s civil, military, and industrial space sectors. And get ready for intense competition in the development of human spaceflight systems, not only for use in low Earth orbit but also outward from our home planet. This commercial «race for space» will lead to technical and business innovations we don’t yet appreciate or understand.
I think the year ahead will see Jeff Bezos’s Blue Origin group wring out its New Shepard reusable suborbital launch vehicle and press forward on its New Glenn booster. Similarly, Richard Branson’s Virgin Galactic SpaceShipTwo will hasten the pace of testing to create suborbital passenger service. And keep an eye on the maiden flights of the Boeing CST-100 Starliner and the SpaceX Dragon 2 capsules — stepping stones to restore our nation’s capabilities for human spaceflight.
I expect Elon Musk and his SpaceX rocketeers will fly their Falcon Heavy launcher from the refurbished Launch Complex 39 pad A at the Kennedy Space Center in Florida. That’s the same site that I rocketed from with my Apollo 11 colleagues, Neil Armstrong and Michael Collins, to achieve the first human landing on the Moon in July 1969!
China is headed for several milestone achievements. For one, they will use their new Long March 5 and Long March 7 boosters to advance their goal of building their own space station. In addition, look for China to fly to the moon the robotic Chang’e 5 spacecraft and attempt the first lunar sample return to Earth in more than 40 years.
Lastly, look for surprises from mysterious Mars! Now orbiting the Red Planet is the European Space Agency’s ExoMars Trace Gas Orbiter that in 2017 will «sniff out» whether methane detected on that world is a product of Martian microbes.
Personally, I’ll be working as hard as ever to rally public and political willpower to hasten the day when those first footfalls on the Red Planet lead to permanent inhabitation of Mars.
Julie Brefcyznski-Lewis Richard Nolan / Richard Nolan
Julie Brefcynski-Lewis:
Virtual Reality Reset
Dr. Julie Brefcynski-Lewis is assistant professor of physiology and pharmacology in the Blanchette Rockefeller Neurosciences Institute at West Virginia University in Morgantown. She has studied higher order brain functions such as attention, emotions, social interactions, and meditation.
The scientific method is rooted in objectivity and has relied on government and public confidence that scientists are well trained and dedicated to accurate results. I think the big question of 2017 will be how science will adapt to a changing cultural landscape in terms of public attitudes, funding, global participation, and more.
In my field of neuroscience, we are a little lucky that many lawmakers making political and funding decisions have direct experiences with neurological and mental health needs of loved ones. In terms of disruptive technology, I predict virtual reality will have a major influence on how science is performed and communicated. In my research, for example, we are adapting novel PET (positron emission tomography) brain imager technology so that it is wearable and allows imaging of someone moving and responding in a virtual environment, such as an addict in a cue-laden setting. Other laboratories are using VR to explore the shapes and functions of neurons and molecules, and it’s likely to become a haven for social interactions such that exciting new studies on human behavior will emerge.
George Church Courtesy of George Church / George Church
George Church:
Gee-Whiz Gene Editing
Dr. George Church is professor of genetics at Harvard Medical School in Boston and director of personalgenomes.org. He is the author of «Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves.»
Next year will see great strides in reading and writing genomes, organs, and ecosystems. We’ll move beyond small genome «edits» to large-scale «writing,» with huge practical consequences, including resistance to all viruses. For organs, new microscopy methods will enable molecular atlases of whole bodies during normal development from eggs to adults and pathological states like cancer. Leveraging such body atlases will be recipes for constructing any tissue type and transplanting it successfully between species. For ecosystems, we will see growing numbers of tests of safety and effectiveness of genetic strategies for controlling agents (mosquitoes, worms, mice) of deadly diseases like malaria, filariasis, and Lyme disease.
We will also see great progress in the use of genetic engineering to reverse processes that had seemed irreversible: aging and extinction. And super-compact encoding of data into DNA-storage will transform our ability to record video and interface with brains.
Kate Darling Flavia Schaub / Flavia Schaub
Kate Darling:
Artificial Intelligence Heads Home
Dr. Kate Darling, a researcher at the MIT Media Lab in Cambridge, Massachusetts, investigates social robotics and conducts experimental studies on human-robot interaction. Her work explores the emotional connection between people and life-like machines.
I’m excited about the rise of personal assistant robots. We won’t be seeing Rosie from the Jetsons anytime soon, but we will see more and more cloud-based artificial intelligence (AI) products in the home — in particular, voice-activated speaker systems that sit on tables and countertops.
These robots are at a primitive stage, have few capabilities, and are full of flaws. But there’s a lot of demand for them. That’s because they can perform some useful tasks (turning on music and lights, reading out loud, answering trivia) and because people enjoy interacting with a digital «other.» In some ways the flaws and limitations are part of these assistants’ charm, and 2017 will definitely see more of these in people’s lives.
Katherine Freese Evan Cohen / Evan Cohen
Katherine Freese:
Dark Matter Answer?
Dr. Katherine Freese is professor of physics at the University of Michigan in Ann Arbor and a noted expert on dark matter. She is the author of «The Cosmic Cocktail: Three Parts Dark Matter.»
My work seeks to understand what the universe is made of. Ordinary atomic material makes up only five percent of the universe. Most of the mass in the universe is made of dark matter, and we want to know what it is.
Right now, only one experiment has detected a hint of dark matter: the Italian Dark Matter Experiment (DAMA). The technique the DAMA scientists use is based on a paper I wrote, and so I am dying to know if their results are right. In 2017 three other experiments will be in a position to show once and for all whether or not DAMA has actually discovered dark matter. It is possible that the 80-year-old dark matter puzzle will finally be solved.
Lawrence Krauss Tessa Etzione / Tessa Etzione
Lawrence Krauss:
Quantum Computing Breakthroughs
Dr. Lawrence Krauss is professor of earth and space exploration and director of the Origins Project at Arizona State University in Tempe. He is the author of nine books, including «A Universe from Nothing» and «The Physics of Star Trek.» His latest book, «The Greatest Story Ever Told,» is scheduled for publication in 2017.
It seems to me that quantum computing is evolving very fast. I expect that some breakthroughs this this area, or in the related areas of quantum teleportation or encryption, may occur in 2017.
Also in 2017, we may have new, definitive data from the South Pole on the possibility that gravitational waves from earliest moments of the Big Bang might be detectable. If so, this would have utterly profound implications for our understanding of our own universe, and maybe the existence of other universes.
I don’t hold out much hope for any definitive developments at CERN’s Large Hadron Collider in 2017 (maybe in 2018). But then I never expected them to discover the Higgs boson when they did. If they observe new particles, it will completely determine the future of particle physics. If not, will another accelerator be built to help us continue to push the frontiers of knowledge?
Jennifer Kuzma Richard Nolan / Richard Nolan
Jennifer Kuzma:
«Gene Drives» Get Real
Dr. Jennifer Kuzma is professor of social sciences at the School of Public and International Affairs and co-founder and co-director of the Genetic Engineering and Society Center at North Carolina State University in Raleigh.
Natural scientists have discovered new biology-based tools that can precisely edit existing genes in living organisms, or insert new genes at particular locations in the genome. These «gene editing» tools (e.g. «CRISPR») are being used to change multiple genes in plants, animals, and microorganisms for industrial production of medicines or chemicals, agricultural productivity, or environmental goals such as pollution remediation. Based on gene editing, biologists have discovered ways to engineer wild populations in the environment using «gene drives.» With gene drives, it is theoretically possible to release just a few individuals of a species and an engineered gene can then spread throughout the wild population. Gene drives could be used to protect endangered species against disease or to reduce populations of unwanted species, such as invasive pests.
Gene-edited products are already in the marketplace. Genetically engineered insects with population-reduction genes have been cleared by government agencies for environmental release in certain areas. Although gene drives have only been tested in the laboratory, we will see the first releases of organisms with gene drives in the near future, possibly 2017. The ability to engineer populations in the wild necessitates a broader public discussion about whether we want to pursue this as a society. I would like to predict this dialogue will happen, but the political will to engage the public on these topics is currently lacking.
Janet Hering R. Schaffner / R. Schaffner
Janet Hering:
The Circular Economy Expands
Dr. Janet Hering is director of the Swiss Federal Institute of Aquatic Science and Technology in Dubendorf and professor of environmental biogeochemistry at the Swiss Federal Institute of Technology in Zurich.
Industry developed the concept of the circular economy to «extract the maximum value and use from all raw materials, products and waste, fostering energy savings and reducing Green House Gas emissions.» This concept is increasingly being taken up by cities around the world as they recover heat from domestic sewage (Paris), reclaim water from wastewater to recharge aquifers (Orange County, California) and produce water for industrial wafer fabrication (Singapore), produce agricultural fertilizers from source-separated urine (Durban, South Africa), and produce fuel pellets from fecal sludge (Kampala, Uganda).
Since 2010, over half of the world’s population has been living in cities, expanding both the opportunity and the need to redefine municipal wastewater and waste as a resource. Establishing the circular economy in cities holds great promise for increasing urban sustainability. The number of cities pursuing this approach will grow rapidly in 2017.
Tracey Holloway Paul Schilling / Paul Schilling
Tracey Holloway:
Better Weather Prediction
Dr. Tracey Holloway is professor of atmospheric and oceanic sciences in Nelson Institute for Environmental Studies at the University of Wisconsin in Madison and leader of NASA’s Health and Air Quality Applied Sciences Team.
This coming year will bring a huge advance in the monitoring of Earth from space. The National Oceanic and Atmospheric Administration and NASA worked together on a new geostationary satellite, called GOES-16, that launched in November 2016. Starting in 2017, GOES-16 will provide data almost continuously, improving weather predictions and environmental management.
Satellites are already able to «see» our life-supporting atmosphere in a way that has transformed weather prediction, emergency response and public health. But for measurements of smoke, dust, lightning and other features, GOES-16 will be the first time we have nearly minute-by-minute data. For example, the new satellite will allow us to track forest fire smoke so that people can take measures to protect their health. This near-real-time data will be a huge step forward from current satellites that provide snapshots of these important features only once or twice a day.
Each new satellite offers a treasure trove of data, publicly available to support decision-making of communities and businesses. I’m working with scientists across the country to help ensure that cities, health professionals, weather forecasters — even kids for the science fair — get the maximum benefit from these amazing eyes in the sky.
Ainissa Ramirez Bruce Fizzell / Bruce Fizzell
Ainissa Ramirez:
One Amazing Eclipse
Dr. Ainissa Ramirez is a materials scientist and author in New Haven, Connecticut. She hosts the podcast Science Underground and is writing a book on the impact of materials on history and culture.
One of the biggest science events of 2017 will be a total solar eclipse. On August 21, a diagonal swath of the U.S. from Oregon to Kansas to South Carolina will go dark. More than 300 million Americans live within a two-day drive from seeing this heavenly event.
How the sky blackens in the middle of the day is a bit like getting a bad seat at the movies. If a tall person seated in front of you blocks your view of the screen, then you are experiencing what happens to the Earth on a cosmic scale. In this movie drama, you are the Earth, the tall person is the moon, and the movie screen is the sun.
During an eclipse, the darkness lasts only a few minutes. But it is a reminder that we are all part of something big. Eclipses also connect us to history. In ancient times, eclipses stopped wars. In 1919, an eclipse helped prove Einstein’s theory of relativity. Even Thomas Edison got inspiration for his light bulb in 1878 while on a trip to Wyoming to see an eclipse.
This August, all of us get a chance to be connected to nature, to science, and to each other. Perhaps we’ll find other ways to connect when the darkness passes.
Carlo Ratti Lars Kruger / Lars Kruger
Carlo Ratti:
Self-Driving Vehicles Come of Age
Dr. Carlo Ratti is a professor at MIT, where he directs the Senseable City Lab. He is co-author of «The City of Tomorrow: Sensors, Networks, Hackers, and the Future of Urban Life.»
Forget about the difficulties we saw with Uber’s fleet of self-driving vehicles in San Francisco. This is soooo 2016! 2017 will be the year of self-driving, and of the exploration of its impact on our cities.
Self-driving vehicles promise to blur the distinction between private and public modes of transportation. «Your» car could give you a lift to work in the morning and then, rather than sitting idle in a parking lot, give a lift to someone else in your family — or, for that matter, to anyone else in your neighborhood, social-media community, or city.
This implies a city in which we could travel on demand with just a fraction of the number of cars in use today. Such reductions in car numbers are just theoretical. However, they could potentially lower the cost of our mobility infrastructure and the embodied energy associated with building and maintaining it.
Furthermore, driverless cars could have a big impact on our lifestyle and daily activities: They could be transformed into extensions of our homes. While travelling, we might be able to do lot of activities we use to do at home — read a book, take a nap, eat, text, or make love (more than what already happens today).
http://www.nbcnews.com/storyline/2016-year-in-review/11-surprising-predictions-2017-some-biggest-names-science-n701136