Tag Archives: Proseres prospectiva

La era del algoritmo ha llegado y tus datos son un tesoro

Comments off

Las fórmulas para convertir gigantescas cantidades de datos en información con valor económico se convierten en el gran activo de las multinacionales

Fuente: https://elpais.com/economia/2018/03/01/actualidad/1519921981_137226.html
San Fernando de Henares 
Sala de monitorización digital de Indra en San Fernando de Henares (Madrid) VICTOR SAINZ VÍDEO: JAIME CASAL

¿Qué tienen en común las menciones en las redes sociales al turismo de Mozambique, la recogida de residuos en la localidad riojana de Haro o la eficiencia energética de los edificios registrados en el catastro? En principio, nada. Pero una visita a la sala de monitorización de eventos de Indra basta para encontrar el nexo entre elementos tan dispares.

Un 90% de los datos de toda la historia se han generado en estos cinco años

Aquí, en esta habitación repleta de pantallas con luces tintineantes, un grupo de ingenieros controla 24 horas al día siete días a la semana la información que reciben de una infinidad de procesadores. Se dedican a observar la evolución de estos indicadores, y envían sus conclusiones a los clientes que han contratado sus servicios, ya sean empresas o administraciones públicas. Es este un excelente lugar para comprender por qué los algoritmos se han convertido en el secreto del éxito de muchas grandes compañías: un secreto que les permite canalizar un flujo ingente de información para tomar decisiones fundamentales para su actividad. 

Desde esta sala-observatorio que Indra tiene en la localidad madrileña de San Fernando de Henares, José Antonio Rubio explica que es aquí donde gigantescas cantidades de datos son convertidas en conocimiento susceptible de ser monetizar. “Los algoritmos no solo tienen la capacidad de explicar la realidad, sino también de anticipar comportamientos. Es una ventaja para evitar o minimizar riesgos o para aprovechar oportunidades”, asegura Rubio, director de Soluciones Digitales de Minsait, la unidad de negocio creada por Indra para encarar la transformación digital.

No es una novedad que las compañías obtengan datos de la analítica avanzada para estudiar características del producto que planean sacar al mercado; el precio al que lo quiere colocar o incluso decisiones internas tan sensibles como la política de retribuciones a sus empleados. Lo sorprendente es la dimensión. No es solo que recientemente se haya multiplicado hasta volúmenes difíciles de imaginar el número de datos en circulación —se calcula que la humanidad ha generado en los últimos cinco años un 90% de la información de toda la historia—. También han crecido vertiginosamente las posibilidades de interconectarlos. La palabra revolución corre de boca en boca entre académicos y gestores empresariales en contacto con el floreciente negocio de los algoritmos y el llamado big data.

“El reto ahora es transformar esos datos en valor”, dicen en el BBVA

“La primera revolución llegó hace unos años con el almacenamiento de inmensas cantidades de datos procedentes de las huellas electrónicas que todos dejamos. La segunda, en la que estamos inmersos, procede de la capacidad que tanto empresarios como usuarios o investigadores tienen para analizar estos datos. Esta segunda revolución procede de los algoritmos supercapaces y de lo que algunos llaman inteligencia artificial pero yo prefiero denominar superexpertos”, explica Estaban Moro, profesor de la Universidad Carlos III de Madrid y del MediaLab del MIT de Boston.

Segunda revolución

José Antonio Rubio, director de Soluciones Digitales en Minsait
José Antonio Rubio, director de Soluciones Digitales en Minsait VICTOR SAINZ
 A esta segunda revolución ha contribuido cada uno de los millones de personas que cada día entregan sus datos de forma gratuita y continua, ya sea subiendo una foto a Facebook, comprando con una tarjeta de crédito o pasando por los torniquetes del metro con una tarjeta magnética.

Al calor de gigantes como Facebook y Google, que basan su enorme poder en la combinación de datos y algoritmos, cada vez más empresas invierten cantidades crecientes de dinero en todo lo relacionado con big data. Es el caso del BBVA, cuya apuesta va dirigida tanto a proyectos invisibles para los clientes —como los motores que permiten procesar más información para analizar las necesidades de sus usuarios— como a otras iniciativas fácilmente identificables, como la que permite a los clientes del banco prever la situación de sus finanzas a final de mes.

La ciberseguridad es ya la mayor preocupación de los inversores

“Hace décadas que el sector financiero usa modelos matemáticos. En los años setenta, el cliente de un banco venía definido por muy pocos atributos, como el lugar de residencia, edad, profesión o ingresos. Pero ahora deja una huella digital muy profunda que nos ayuda a conocerlos para particularizar nuestra oferta de servicios y minimizar los riesgos. La novedad es la profundidad de los datos y la capacidad analítica”, asegura Juan Murillo, responsable de divulgación analítica del BBVA. “El gran reto ahora es ver cómo se transforman todos esos datos en valor, no solo para la empresa, sino para nuestros clientes y para la sociedad”, añade.

Las amplísimas posibilidades que ofrecen los algoritmos no están exentas de riesgos. Los peligros son muchos: van desde la ciberseguridad —para hacer frente a hackeo o robo de fórmulas— hasta la privacidad de los usuarios, pasando por los posibles sesgos de las máquinas.

Así, un reciente estudio de la Universidad Carlos III concluía que Facebook maneja para usos publicitarios datos sensibles del 25% de los ciudadanos europeos, que son etiquetados en la red social en función de asuntos tan privados como su ideología política, orientación sexual, religión, etnia o salud. La Agencia Española de Protección de Datos ya impuso en septiembre una multa de 1,2 millones de euros a la red social de Mark Zuckerberg por usar información sin permiso.

La ciberseguridad, por su parte, se ha convertido en la principal preocupación de los inversores de todo el mundo: un 41% declaraba estar “extremadamente preocupado” por este asunto, según el Global Investors Survey de 2018 publicado esta semana por PwC. “Un problema de los algoritmos es que carecen de contexto. Pueden hacer estupendamente bien una tarea, pero si los sacas de esa actividad fallan estrepitosamente. Una empresa que se fusione con otra tendrá que aprender a entrenar de nuevo los algoritmos de la fusionada. Y para eso tienen que saber cómo se crearon”, reflexiona Moro, el experto del MIT estadounidense.

De vuelta a la sala de monitorización de Indra, Rubio desgrana las distintas utilidades que ofrece a sus clientes. Por motivos de confidencialidad, no puede hablar de las decenas de empresas a las que suministra información. Por eso pone ejemplos un tanto exóticos como el del turismo en Mozambique o los residuos de Haro. Cuando termina, la pregunta gira en torno a la posibilidad de que los algoritmos se hayan convertido en el tesoro más preciado de las empresas. “Definitivamente, sí”, responde sin dudar.

¿Y los riesgos? ¿Van a tomar las máquinas el lugar de los humanos? “Esto es algo que preocupa. Todo lo que desconocemos genera desconfianza. Pero la tecnología nos habilita para limitar los riesgos y acercar las industrias digitales a las personas. El riesgo es inherente al ser humano, no a las tecnologías”, concluye Rubio.

EL RIESGO DEL SESGO EN LAS MÁQUINAS

Al ser preguntada por la brecha salarial entre hombres y mujeres, Fuencisla Clemares, directora general de Google España, vino a decir que en su empresa no sabían lo que era eso. Allí, un algoritmo ciego a las cuestiones de género propone cuánto debe cobrar cada uno. La frialdad de las matemáticas puede lograr decisiones más objetivas y libres de prejuicios. Pero, ¿y si las máquinas tienen su propio sesgo? ¿Y si este es aún más invisible que el de los humanos?

Un reciente artículo del Financial Times contaba cómo en una empresa estadounidense de atención telefónica, la valoración del trabajo de los empleados había pasado de los humanos a las máquinas. Pero que estas puntuaban con una nota más baja a aquellos con un fuerte acento, ya que a veces no podían entender lo que decían. Ejemplos como este muestran el riesgo creciente de que los algoritmos se alcen como los nuevos jueces de un tribunal supremo e inapelable.

Esteban Moro, investigador de la Universidad Carlos III y del Massachusetts Institute of Technology (MIT) centra el debate en una palabra: la escala. “El problema no es que los algoritmos tengan sesgo, porque los humanos también los tenemos. El problema es que estas fórmulas matemáticas pueden afectar a cientos de millones de personas y tomar decisiones con efectos mucho mayores que las sentencias de un juez”, explica. Así, una persona que busca empleo puede librarse de la tiranía de los gustos o prejuicios del director de recursos de una u otra empresa. Pero a cambio se enfrenta a los criterios que comparten macroportales de ofertas de trabajo. El monstruo se hace más grande.

Juan Francisco Gago, director de Prácticas Digitales en Minsait, de Indra, admite que, en la medida en que los algoritmos acaban tomando decisiones, pueden suscitar problemas morales. Y para ello pone el ejemplo de un aparato de inteligencia artificial capaz de hacer detecciones de cáncer. “Quizás con más precisión que un oncólogo humano”, matiza. “Pero al final, la responsabilidad no puede estar en una máquina, sino en los individuos que la programan. Es necesario que se establezca un marco regulatorio para esos casos”, asegura el directivo de Indra.

El Reglamento General de Protección de Datos, que entrará en vigor en la UE el próximo mes de mayo, establece que los ciudadanos europeos no deben ser sometidos a decisiones “basadas únicamente en el proceso de datos automáticos”, con una mención expresa a las “prácticas de contratación digital sin intervención humana”.

El equipo del MIT donde trabaja Moro desarrolla un proyecto de ingeniería inversa donde se pretende analizar cómo trabajan los algoritmos de gigantes como Google y Facebook. La idea es hacer experimentos con personas que introducen diversas informaciones en las redes, para ver luego cómo estas empresas reaccionan. Se trata, en el fondo, de intentar domar a la bestia y ver si es posible conocer cómo funcionan fórmulas matemáticas que tienen un impacto en nuestras vidas. Un impacto que nadie duda irá a más en los próximos años.

Cómo la realidad aumentada puede hacer mas segura y mejor la operación aeronáutica

Comments off

Let’s face it, we all have daydreamed of sitting in a cockpit and roaming the wild, blue yonder. It’s hard to find someone who wouldn’t have been fascinated by aviation at some point in their life. But for all the gratification that flying brings with it, no one can deny that it is also in equal measure, a dangerous thing. Now, for the number of moving parts that make up an aircraft, it is a surprisingly efficient and safe machine. The incredibly high standard to which an aircraft is made and maintained ensures that failure rates become a statistical improbability. No, the real weak link in the chain isn’t a plane’s hydraulics or engines or control surfaces as one might expect, but is in fact the pilot itself.

Current studies point that pilot error accounts for a staggering 85% of all aviation accidents. And while accident rates in commercial aviation have decreased over the past few years, in general, they have remained mostly the same. Accidents in personal flight have actually gone up by 20% in the last decade.

 ar helmet flight

Augmented Reality in General Aviation

With all the numbers, it’s easy to just point the finger at pilots and say they didn’t do their job right. But there is more to it than just that. Richard Collins in his article – Was it Really Pilot Error – Or Was it Something Else? sums up the real problem here very succinctly – “Pilots don’t err on purpose, though, they err because they don’t know better.

Anyone who has flown (or has even tried out a desktop flight simulator) will tell you that flying ain’t easy. Even a glancing look at the controls of a Cessna 172 can confound a student pilot, let alone those of a Boeing 737 which consists of hundreds of switches and dials.

Pilots need to consider a lot of information before making the simplest of decisions and small errors have a way of snowballing out of control. Reading instruments, terrain, and weather to make decisions can get very tedious very fast. Being a pilot myself, I know at first hand how dangerous such a scenario can be.

This is where Augmented Reality (AR) steps in. The problem of pilot error isn’t so much as information not being available, but rather, too much information presented all the time that can lead to analysis paralysis. With AR applications, timely relevant information can be presented to the pilot when it is needed in an intuitive format, so that they can focus on the task at hand.

The idea of using AR in aviation isn’t so far fetched either, in fact, it has already been successfully implemented. Today, every fourth generation onwards fighter jet comes with a standard issue Heads Up Display (HUD) that displays critical navigational, flight, targeting, and mission related information on a piece of glass in front of the pilot. The idea is to ensure the pilot need not keep looking down at the instruments while in the heat of the battle. The fifth generation F-35 Lightning 2 has taken this concept even further by installing a complete AR package within the pilot’s helmet, giving them unprecedented 360 degree situational awareness and even see-thru ability.

Now, while most technologies typically trickle down from military applications to consumer markets, startups such as Aero Glass are also disrupting the traditional aviation landscape. Today, thanks to falling hardware prices and advancements in visualization technologies, AR is finally ready to make its appearance in commercial flying as well, a development that is long overdue. Many car models from Audi, BMW and Toyota have HUDs and it’s easy to find third party add ons for regular cars as well, so it’s definitely due for flight systems.

How AR Can Help Pilots

As stated before, the primary utility of AR in aviation is its ability to overlay relevant information on demand. Today’s AR systems can visualize terrain, navigation, air-traffic, instrument, weather, and airspace information in a 360-degree, 3D overlay that is easy to understand. Here are a few ways in which AR can assist a pilot. The following are shots from a working Aero Glass prototype in action.

AR runway markers can guide pilots during taxiing and taking off.

AR runway markers can guide pilots during taxiing and taking off.

So, let’s say a pilot is getting ready to taxi. Their AR HMD can create a virtual checklist that can help them with their pre-flight checks. Once the check is complete, the HMD can display runway information and guide the pilot to their designated runway. The pilot can even be alerted of other aircraft that are taxiing/landing/taking off.

AR overlays and instructions can be superimposed on runways to make landings easier.

AR overlays and instructions can be superimposed on runways to make landings easier.

Likewise, when the pilot is getting ready to take off or land, the AR system can display a simple corridor overlay to show the appropriate path. This is particularly useful as taking off and landings are the riskiest part of flying. As pilots are closer to the ground, any emergency needs to be addressed quickly. By telling a pilot exactly what needs to be done, an AR system can negate oversights making take-offs and landings simpler and safer.

A corridor overlay can let pilots know when they are going off course.

A corridor overlay can let pilots know when they are going off course.

Finally, an AR system can prove very handy during the cruise phase of the flight as well. Important information including artificial horizons, waypoints, weather updates, flight plans, restricted areas and terrain information can be displayed to provide complete situational awareness.

The display can be customized to a pilot’s preferences and modes can be turned on and off as well. It’s worth noting that a very high degree of precision is required to make this work and even the slightest different in overlay can have drastic (and potentially fatal) consequences.

Check out the below video to see a working Aero Glass prototype in action:

AR Use Cases Beyond Piloting

While the above mentioned uses of AR are quite obvious and well tested, the technology presents opportunities elsewhere as well. Maintenance Repair and Operations (MRO) are another area that can benefit greatly from AR. Training and licensing a technician can be very expensive and time consuming. In the U.S.A., it can take up to 8 years for a maintenance professional to become fully licensed primarily because training is usually hands-on and getting access to equipment can be tough at times.

AR, VR, and Mixed Reality are already proving to be invaluable here. By creating virtual replicas of the actual components, technicians can practice their skills in a safe environment as many times as needed. They can place their hands on virtual parts and work with them just as they would on the real thing. AR/VR based instructions can reduce the amount of time and money required to train a professional, while making training completely accident-free.

An AR follow-me car can guide a driver to their destination.

An AR follow-me car can guide a driver to their destination.

Likewise while HUDs are making appearances in automobiles, they are barely scratching the surface of what’s possible. Wearable AR systems can provide 360-degree situational awareness to drivers just like pilots and help them drive safer. Landmarks, navigational information, and hazards, can all be displayed in front of a driver’s line of sight so that they don’t need to keep taking their eyes off the road.

Some people are of the opinion that automation is the future of both general and military aviation. Autopilot and sensor technology are no doubt making great strides and they will make the skies safer. That being said, technology won’t be replacing the humble pilots anytime soon, error prone as they might be.

Take for instance the case of Flight 1549 (the flight the movie Sully is based on). Heading from New York City to Charlotte, North Carolina, the plane experienced a bird strike just 3 minutes after take off which took out both the engines. Finding that he couldn’t turn back, nor could they make it to New Jersey’s Teterboro airport, the pilot decided to ditch the plane in the Hudson river, which he successfully did saving all the 155 people onboard. Now known as the “Miracle on the Hudson,” the incident is a reminder that the human element cannot be overlooked as machines cannot make decisions of such nature.

Augmented reality applications such as those being developed by Aero Glass will help pilots of the future avoid costly mistakes and make timely decisions that will save lives. While the technology is still under development, it goes without saying that the enhancements to safety they bring are well worth the time.


Disclosure: This is a guest post by an actual pilot named Ákos Maróy; he is also the founder of Aero Glass. The content in this article was not produced by the UploadVR staff, but was edited for grammar and flow. No compensation was exchanged for the creation of this content.

El metaverso basará su confianza en las cadenas de bloques

Comments off

“Virtual worlds are going to be one of the first killer apps for blockchains and perhaps the deepest users of them.” – Fred Ehrsam, Co-Founder, Coinbase

Christian Lemmerz, a German-Danish sculptor who normally carves his subjects into marble, currently has his latest work on display in Venice, Italy. “La Apparizione,” a towering golden image of a crucified Jesus Christ, won’t be found sitting on a pedestal, however, because this is a work of virtual reality art.

That means viewers attending the exhibit are first made to stand in an empty room where they are placed inside a VR headset display. Only once the headset is on do they see the floating, pulsing Jesus hovering before them.

Lemmerz’s statue is also for sale, and with only five editions of the piece now released, each one costs around $100,000. That may be an expensive price tag for a piece of software, but not out of line for a high-end work of art.

In theory, this work could also be hacked, stolen, endlessly copied, and distributed online. Art forgery, a practice that dates back at least 2,000 years, presents a unique set of challenges for the industry when the art itself is made from lines of code. It’s likely that Lemmerz would not appreciate if forgeries of his work soon poured out from file-sharing sites like Pirate Bay.

Since the price of art depends on scarcity and authenticity to preserve it’s value, how might the value of a prized digital work be protected?

One promising solution is blockchain technology.

In fact, blockchain may become the way we verify the legitimacy of almost any virtual asset, including currencies, identity, and the authenticity and ownership of virtual property. Fred Ehrsam, co-founder of the popular cryptocurrency exchange Coinbase, has written that “virtual worlds are going to be one of the first killer apps for blockchains and perhaps the deepest users of them.”

In the case of verifying digital art like “La Apparizione,” using a blockchain is more straightforward. As I wrote in 2016, “blockchains are powerful for one reason: they solve the problem of proving that when someone sends you a digital “something” (like bitcoin, for example), they didn’t keep a copy for themselves, or send it to 20 other people.” Using a blockchain to buy and sell rare VR art is one way to validate that a particular work is indeed the original.

“Blockchains may be the best way to authenticate ownership of virtual property, or even establish and preserve someone’s identity.”

Ehrsam is pointing at an even deeper insight about the use of blockchains in virtual reality. As more companies, including Second Life developer Linden Lab, work to build the large-scale virtual worlds often compared to concepts like the “metaverse” from Neal Stephenson’s Snowcrash or the OASIS in Ready Player One, blockchains may be the best way to authenticate ownership of virtual property, or even establish and preserve someone’s identity.

Philip Rosedale, the founder of Second Life and a new VR world called High Fidelity, posted an essay indicating his own enthusiasm for the way that blockchains may be useful in VR. High Fidelity is now launching a new cryptocurrency, called HFC, on a public blockchain that will be used, among other things, to verify the authenticity and ownership of virtual goods.

“If there was no concept of intellectual property in virtual worlds, there would be little motivation to create things, since your creations would immediately be re-used and re-distributed by others without agreement,” Rosedale tells Singularity Hub.

Rosedale says that content creators won’t be incentivized to create digital property if they cannot protect and profit from their work. And considering that buying and selling virtual property is already profitable for many virtual world users, it does seem like an aspect of virtual life many will want to protect.

In 2016 alone, the buying and selling of virtual goods and services between users in Second Life was $500 million—making its economy larger than the GDP of some small countries. Users exchange fashion accessories for their avatars and virtual furniture to decorate their online spaces, and artists like Lemmerz could reasonably seek out collectors and galleries willing to buy their work.

According to High Fidelity, the HFC blockchain will be used to ensure that virtual goods are the original by allowing creators to assign certificates to their work.

“Users will be able to register their creations on the blockchain so they can prove ownership of their designs. Next, when something is bought, a certificate will be issued on the blockchain proving that the new owner has a legitimate copy,” Rosedale says.

This system will serve a similar function as patents and trademarks in the real world. High Fidelity says they intend to create a process of review, similar to that conducted in many countries, to ensure that the registration of a digital certificate be granted to real original work that doesn’t infringe on earlier creations. Once assigned, the certificate cannot be canceled and will be insured on the HFC blockchain.

“Unverified goods could be dangerous, for example containing malicious scripts. Certified digital assets will be much more safe, just as with the App Store today,” Rosedale adds.

“If your assets are on a blockchain, no single operator of a world can take them from you. If your identity lives on the blockchain, you can’t be deleted,” Ehrsam writes.

Another major benefit blockchains offer, as Ehrsam points out, is that they prevent any single company or centralized intermediary from having the power to manipulate things. As depicted in Ready Player One, where a single oligarchic company owns and operates the servers that host the story’s virtual world, a single company hosting any virtual world could in theory exploit users in a variety of ways.

“If your assets are on a blockchain, no single operator of a world can take them from you. If your identity lives on the blockchain, you can’t be deleted,” Ehrsam writes.

Ehrsam’s key takeaway is insightful. He writes, “When you drill down, blockchains are really a shared version of reality everyone agrees on. So whether it’s a fully immersive VR experience, augmented reality, or even Bitcoin or Ethereum in the physical world as a shared ledger for our ‘real world,’ we’ll increasingly trust blockchains as our basis for reality.”

Since virtual reality is a public space constructed entirely of software, blockchains may prove useful and perhaps essential in providing a foundation for trust.

For more, High Fidelity also posted a followup post detailing the use of the HFC blockchain specifically for protecting intellectual property in virtual reality.

Image Credit: Tithi Luadthong / Shutterstock.com

Aaron Frank is a writer and speaker and one of the earliest hires at Singularity University. Aaron is focused on the intersection of emerging technologies and accelerating change and is fascinated by the impact that both will have on business, society, and culture.

As a writer, his articles have appeared online in Vice’s Motherboard, Wired UK and Forbes. As a speaker, Aaron has lectured fo… Learn More

Sostenibilidad no es suficiente; necesitamos culturas regenerativas

Comments off

Sustainability is not enough; we need regenerative cultures

Sustainability alone is not an adequate goal. The word sustainability itself is inadequate, as it does not tell us what we are actually trying to sustain. In 2005, after spending two years working on my doctoral thesis on design for sustainability, I began to realize that what we are actually trying to sustain is the underlying pattern of health, resilience and adaptability that maintain this planet in a condition where life as a whole can flourish. Design for sustainability is, ultimately, design for human and planetary health (Wahl, 2006b).

A regenerative human culture is healthy, resilient and adaptable; it cares for the planet and it cares for life in the awareness that this is the most effective way to create a thriving future for all of humanity. The concept of resilience is closely related to health, as it describes the ability to recover basic vital functions and bounce back from any kind of temporary breakdown or crisis. When we aim for sustainability from a systemic perspective, we are trying to sustain the pattern that connects and strengthens the whole system. Sustainability is first and foremost about systemic health and resilience at different scales, from local, to regional and global.

Complexity science can teach us that as participants in a complex dynamic eco- psycho-social system that is subject to certain biophysical limits, our goal has to be appropriate participation, not prediction and control (Goodwin, 1999a). The best way to learn how to participate appropriately is to pay more attention to systemic relationships and interactions, to aim to support the resilience and health of the whole system, to foster diversity and redundancies at multiple scales, and to facilitate positive emergence through paying attention to the quality of connections and information flows in the system. This book explores how this might be done. [This is an excerpt of a subchapter from Designing Regenerative Cultures, published by Triarchy Press, 2016.]

Using the Precautionary Principle

One proposal for guiding wise action in the face of dynamic complexity and ‘not knowing’ is to apply the Precautionary Principle as a framework that aims to avoid, as far as possible, actions that will negatively impact on environmental and human health in the future. From the United Nation’s ‘World Charter for Nature’ in 1982, to the Montreal Protocol on Health in 1987, to the Rio Declaration in 1992, the Kyoto Protocol, and Rio+20 in 2012, we have committed to applying the Precautionary Principle over and over again.

The Wingspread Consensus Statement on the Precautionary Principle states: “When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause and effect relationships are not fully established scientifically” (Wingspread Statement, 1998). The principle puts the burden of proof that a certain action is not harmful on those proposing and taking the action, yet general practice continues to allow all actions that have not (yet!) been proven to have potentially harmful effects to go ahead unscrutinized. In a nutshell, the Precautionary Principle can be summarized as follows: practice precaution in the face of uncertainty. This is not what we are doing.

While high-level UN groups and many national governments have repeatedly considered the Precautionary Principle as a wise way to guide actions, day-to-day practice shows that it is very hard to implement, as there will always be some degree of uncertainty. The Precautionary Principle could also potentially stop sustainable innovation and block potentially highly beneficial new technologies on the basis that it cannot be proven with certainty that these technologies will not result in unexpected future side-effects that could be detrimental to human or environmental health.

Why not challenge designers, technologists, policy-makers, and planning professionals to evaluate their proposed actions on their positive, life-sustaining, restorative and regenerative potential?

Why not limit the scale of implementation of any innovation to local and regional levels until proof of its positive impact is unequivocally demonstrated?

Aiming to design for systemic health may not save us from unexpected side-effects and uncertainty, but it offers a trial and error path towards a regenerative culture. We urgently need a Hippocratic Oath for design, technology and planning: do no harm! To make this ethical imperative operational we need a salutogenic (health generating) intention behind all design, technology and planning: We need to design for human, ecosystems and planetary health. This way we can move more swiftly from the unsustainable ‘business as usual’ to restorative and regenerative innovations that will support the transition towards a regenerative culture. Let us ask ourselves:

How do we create design, technology, planning and policy decisions that positively support human, community and environmental health?

We need to respond to the fact that human activity over the last centuries and millennia has done damage to healthy ecosystems functioning. Resource availability is declining globally, while demand is rising as the human population continues to expand and we continue to erode ecosystems functions through irresponsible design and lifestyles of unbridled consumption.

If we meet the challenge of decreasing demand and consumption globally while replenishing resources through regenerative design and technology, we have a chance of making it through the eye of the needle and creating a regenerative human civilization. This shift will entail a transformation of the material resource basis of our civilization, away from fossil resources and towards renewably regenerated biological resources, along with a radical increase in resource productivity and recycling. Bill Reed has mapped out some of the essential shifts that will be needed to create a truly regenerative culture.

“Instead of doing less damage to the environment, it is necessary to learn how we can participate with the environment — using the health of ecological systems as a basis for design. […] The shift from a fragmented worldview to a whole systems mental model is the significant leap our culture must make — framing and understanding living system interrelationships in an integrated way. A place-based approach is one way to achieve this understanding. […] Our role, as designers and stakeholders is to shift our relationship to one that creates a whole system of mutually beneficial relationships.” — Bill Reed (2007: 674)

Reed named ‘whole-systems thinking’ and ‘living-systems thinking’ as the foundations of the shift in mental model that we need to create a regenerative culture. In Chapters 3, 4 and 5, we will explore these necessary shifts in perspective in some detail. They go hand- in-hand with a radical reframing of our understanding of sustainability. As Bill Reed puts it: “Sustainability is a progression towards a functional awareness that all things are connected; that the systems of commerce, building, society, geology, and nature are really one system of integrated relationships; that these systems are co-participants in the evolution of life” (2007). Once we make this shift in perspective we can understand life as “a whole process of continuous evolution towards richer, more diverse, and mutually beneficial relationships”. Creating regenerative systems is not simply a technical, economic, ecological or social shift: it has to go hand-in-hand with an underlying shift in the way we think about ourselves, our relationships with each other and with life as a whole.

Figure 1 shows the different shifts in perspective as we move from ‘business as usual’ to creating a regenerative culture. The aim of creating regenerative cultures transcends and includes sustainability. Restorative design aims to restore healthy self-regulation to local ecosystems, and reconciliatory design takes the additional step of making explicit humanity’s participatory involvement in life’s processes and the unity of nature and culture. Regenerative design creates regenerative cultures capable of continuous learning and transformation in response to, and anticipation of, inevitable change. Regenerative cultures safeguard and grow biocultural abundance for future generations of humanity and for life as a whole.

Figure 1: Adapted from Reed (2006) with the author’s permission

The ‘story of separation’ is reaching the limits of its usefulness and the negative effects of the associated worldview and resulting behaviour are beginning to impact on life as a whole. By having become a threat to planetary health we are learning to rediscover our intimate relationship with all of life. Bill Reed’s vision of regenerative design for systemic health is in line with the pioneering work of people like Patrick Geddes, Aldo Leopold, Lewis Mumford, Buckminster Fuller, Ian McHarg, E.F. Schumacher, John Todd, John Tillman Lyle, David Orr, Bill Mollison, David Holmgren, and many others who have explored design in the context of the health of the whole system.

A new cultural narrative is emerging, capable of birthing and informing a truly regenerative human culture. We do not yet know all the details of how exactly this culture will manifest, nor do we know all the details of how we might get from the current ‘world in crisis’ situation to that thriving future of a regenerative culture. Yet aspects of this future are already with us.

In using the language of ‘old story’ and ‘new story’ we are in danger of thinking of this cultural transformation as a replacement of the old story by a new story. Such separation into dualistic opposites is in itself part of the ‘separation narrative’ of the ‘old story’. The ‘new story’ is not a complete negation of the currently dominant worldview. It includes this perspective but stops regarding it as the only perspective, opening up to the validity and necessity of multiple ways of knowing.

Embracing uncertainty and ambiguity makes us value multiple perspectives on our appropriate participation in complexity. These are perspectives that give value and validity not only to the ‘old story’ of separation, but also to the ‘ancient story’ of unity with the Earth and the cosmos. These are perspectives that may help us find a regenerative way of being human in deep intimacy, reciprocity and communion with life as a whole by becoming conscious co-creators of humanity’s ‘new story’.

Our impatience and urgency to jump to answers, solutions and conclusions too quickly is understandable in the face of increasing individual, collective, social, cultural and ecological suffering, but this tendency to favour answers rather than to deepen into the questions is in itself part of the old story of separation.

The art of transformative cultural innovation is to a large extent about making our peace with ‘not knowing’ and living into the questions more deeply, making sure we are asking the right questions, paying attention to our relationships and how we all bring forth a world not just through what we are doing, but through the quality of our being. A regenerative culture will emerge out of finding and living new ways of relating to self, community and to life as a whole. At the core of creating regenerative cultures is an invitation to live the questions together.

[This is an excerpt of a subchapter from Designing Regenerative Cultures, published by Triarchy Press, 2016.]

Soluciones de verdad para reversar cambio climático

Comments off

SOLUTIONS

Fuente> www.drawdown.org/solutions

The objective of the solutions list is to be inclusive, presenting an extensive array of impactful measures already in existence. The list is comprised primarily of “no regrets” solutions—actions that make sense to take regardless of their climate impact since they have intrinsic benefits to communities and economies. These initiatives improve lives, create jobs, restore the environment, enhance security, generate resilience, and advance human health.

In our book Drawdowneach solution is measured and modeled to determine its carbon impact through the year 2050, the total and net cost to society, and the total lifetime savings (or cost). The exception to this are our «Coming Attraction» solutions, which are a window into what is still emerging. For these solutions, we did not measure cost, savings, or atmospheric impact, but we illuminate technologies and concepts whose growth we will continue to watch.

Solutions by Rank

Rank Solution Sector TOTAL ATMOSPHERIC CO2-EQ REDUCTION (GT) NET COST (BILLIONS US $) SAVINGS (BILLIONS US $)
1 Refrigerant Management Materials 89.74 N/A $-902.77
2 Wind Turbines (Onshore) Electricity Generation 84.60 $1,225.37 $7,425.00
3 Reduced Food Waste Food 70.53 N/A N/A
4 Plant-Rich Diet Food 66.11 N/A N/A
5 Tropical Forests Land Use 61.23 N/A N/A
6 Educating Girls Women and Girls 59.60 N/A N/A
7 Family Planning Women and Girls 59.60 N/A N/A
8 Solar Farms Electricity Generation 36.90 $-80.60 $5,023.84
9 Silvopasture Food 31.19 $41.59 $699.37
10 Rooftop Solar Electricity Generation 24.60 $453.14 $3,457.63

Summary of Solutions by Overall Rank

This table provides the detailed results of the Plausible Scenario, which models the growth solutions on the Drawdown list based on a reasonable, but vigorous rate from 2020-2050. Results depicted represent a comparison to a reference case that assumes 2014 levels of adoption continue in proportion to the growth in global markets.

NOTE: Energy Storage (utility-scale & distributed), Grid Flexibility, Microgrids, Net Zero Buildings, and Retrofitting were not modeled independently to avoid double counting impacts from other solutions.

Rank Solution Sector TOTAL ATMOSPHERIC CO2-EQ REDUCTION (GT) NET COST (BILLIONS US $) SAVINGS (BILLIONS US $)
1 Refrigerant Management Materials 89.74 N/A $-902.77
2 Wind Turbines (Onshore) Electricity Generation 84.60 $1,225.37 $7,425.00
3 Reduced Food Waste Food 70.53 N/A N/A
4 Plant-Rich Diet Food 66.11 N/A N/A
5 Tropical Forests Land Use 61.23 N/A N/A
6 Educating Girls Women and Girls 59.60 N/A N/A
7 Family Planning Women and Girls 59.60 N/A N/A
8 Solar Farms Electricity Generation 36.90 $-80.60 $5,023.84
9 Silvopasture Food 31.19 $41.59 $699.37
10 Rooftop Solar Electricity Generation 24.60 $453.14 $3,457.63
11 Regenerative Agriculture Food 23.15 $57.22 $1,928.10
12 Temperate Forests Land Use 22.61 N/A N/A
13 Peatlands Land Use 21.57 N/A N/A
14 Tropical Staple Trees Food 20.19 $120.07 $626.97
15 Afforestation Land Use 18.06 $29.44 $392.33
16 Conservation Agriculture Food 17.35 $37.53 $2,119.07
17 Tree Intercropping Food 17.20 $146.99 $22.10
18 Geothermal Electricity Generation 16.60 $-155.48 $1,024.34
19 Managed Grazing Food 16.34 $50.48 $735.27
20 Nuclear Electricity Generation 16.09 $0.88 $1,713.40
21 Clean Cookstoves Food 15.81 $72.16 $166.28
22 Wind Turbines (Offshore) Electricity Generation 14.10 $545.30 $762.50
23 Farmland Restoration Food 14.08 $72.24 $1,342.47
24 Improved Rice Cultivation Food 11.34 N/A $519.06
25 Concentrated Solar Electricity Generation 10.90 $1,319.70 $413.85
26 Electric Vehicles Transport 10.80 $14,148.00 $9,726.40
27 District Heating Buildings and Cities 9.38 $457.10 $3,543.50
28 Multistrata Agroforestry Food 9.28 $26.76 $709.75
29 Wave and Tidal Electricity Generation 9.20 $411.84 $-1,004.70
30 Methane Digesters (Large) Electricity Generation 8.40 $201.41 $148.83
31 Insulation Buildings and Cities 8.27 $3,655.92 $2,513.33
32 Ships Transport 7.87 $915.93 $424.38
33 LED Lighting (Household) Buildings and Cities 7.81 $323.52 $1,729.54
34 Biomass Electricity Generation 7.50 $402.31 $519.35
35 Bamboo Land Use 7.22 $23.79 $264.80
36 Alternative Cement Materials 6.69 $-273.90 N/A
37 Mass Transit Transport 6.57 N/A $2,379.73
38 Forest Protection Land Use 6.20 N/A N/A
39 Indigenous Peoples’ Land Management Land Use 6.19 N/A N/A
40 Trucks Transport 6.18 $543.54 $2,781.63
41 Solar Water Electricity Generation 6.08 $2.99 $773.65
42 Heat Pumps Buildings and Cities 5.20 $118.71 $1,546.66
43 Airplanes Transport 5.05 $662.42 $3,187.80
44 LED Lighting (Commercial) Buildings and Cities 5.04 $-205.05 $1,089.63
45 Building Automation Buildings and Cities 4.62 $68.12 $880.55
46 Water Saving – Home Materials 4.61 $72.44 $1,800.12
47 Bioplastic Materials 4.30 $19.15 N/A
48 In-Stream Hydro Electricity Generation 4.00 $202.53 $568.36
49 Cars Transport 4.00 $-598.69 $1,761.72
50 Cogeneration Electricity Generation 3.97 $279.25 $566.93
51 Perennial Biomass Land Use 3.33 $77.94 $541.89
52 Coastal Wetlands Land Use 3.19 N/A N/A
53 System of Rice Intensification Food 3.13 N/A $677.83
54 Walkable Cities Buildings and Cities 2.92 N/A $3,278.24
55 Household Recycling Materials 2.77 $366.92 $71.13
56 Industrial Recycling Materials 2.77 $366.92 $71.13
57 Smart Thermostats Buildings and Cities 2.62 $74.16 $640.10
58 Landfill Methane Buildings and Cities 2.50 $-1.82 $67.57
59 Bike Infrastructure Buildings and Cities 2.31 $-2,026.97 $400.47
60 Composting Food 2.28 $-63.72 $-60.82
61 Smart Glass Buildings and Cities 2.19 $932.30 $325.10
62 Women Smallholders Women and Girls 2.06 N/A $87.60
63 Telepresence Transport 1.99 $127.72 $1,310.59
64 Methane Digesters (Small) Electricity Generation 1.90 $15.50 $13.90
65 Nutrient Management Food 1.81 N/A $102.32
66 High-speed Rail Transport 1.52 $1,038.42 $368.10
67 Farmland Irrigation Food 1.33 $216.16 $429.67
68 Waste-to-Energy Electricity Generation 1.10 $36.00 $19.82
69 Electric Bikes Transport 0.96 $106.75 $226.07
70 Recycled Paper Materials 0.90 $573.48 N/A
71 Water Distribution Buildings and Cities 0.87 $137.37 $903.11
72 Biochar Food 0.81 N/A N/A
73 Green Roofs Buildings and Cities 0.77 $1,393.29 $988.46
74 Trains Transport 0.52 $808.64 $313.86
75 Ridesharing Transport 0.32 N/A $185.56
76 Micro Wind Electricity Generation 0.20 $36.12 $19.90
77 Energy Storage (Distributed) Electricity Generation N/A N/A N/A
77 Energy Storage (Utilities) Electricity Generation N/A N/A N/A
77 Grid Flexibility Electricity Generation N/A N/A N/A
78 Microgrids Electricity Generation N/A N/A N/A
79 Net Zero Buildings Buildings and Cities N/A N/A N/A
80 Retrofitting Buildings and Cities N/A N/A N/A
1050.99
$29,609.30
$74,362.37

Las habilidades que los niños y jóvenes de hoy deberán tener para los trabajos del futuro

Comments off

This is the one skill your child needs for the jobs of the future

Image: REUTERS/Wolfgang Rattay

Where can your kids learn creativity and critical thinking? The answer is simpler than you think

Fuente: www.weforum.org/agenda/2017/09/skills-children-need-work-future-play-lego/?utm_content=buffer75105&utm_medium=social&utm_source=facebook.com&utm_campaign=buffer

However, this mindset is often eroded or even erased by conventional educational practices when young children enter school.

The Torrance Test of Creative Thinking is often cited as an example of how children’s divergent thinking diminishes over time. 98% of children in kindergarten are “creative geniuses” – they can think of endless opportunities of how to use a paper clip.

This ability is reduced drastically as children go through the formal schooling system and by age 25, only 3% remain creative geniuses.

Most of us only come up with one or a handful of uses for a paperclip.

What is most concerning in connection with the human capital question is that over the last 25 years, the Torrance Test has shown a decrease in originality among young children (kindergarten to grade 3).

By the way, did you know you could combine six standard LEGO bricks in more than 915 million ways?

Wrong focus

The World Economic Forum has just released its Human Capital Report with the subtitle “Preparing People for the Future of Work”.

The report states that «many of today’s education systems are already disconnected from the skills needed to function in today’s labour markets».

It goes on to underline how schools tend to focus primarily on developing children’s cognitive skills – or skills within more traditional subjects – rather than fostering skills like problem solving, creativity or collaboration.

This should be cause for concern when looking at the skill set required in the Fourth Industrial Revolution: Complex problem solving, critical thinking and creativity are the three most important skills a child needs to thrive, according to the Future of Jobs Report.

Let’s take a moment to underscore that creativity has jumped from 10th place to third place in just five years.

And that emotional intelligence and cognitive flexibility have also entered the skills list for 2020.

Worryingly, these skills are often not featured prominently in children’s school day where the norm still is the chalk-and-talk teaching approach that has prevailed for centuries.

Child’s play

study in New Zealand compared children who learned how to read at age five with those who learned at age seven.

When they were 11 years old, both sets of children displayed the same reading ability. But the children who only learned how to read at age seven actually showed a higher comprehension level.

One of the explanations is that they had more time to explore the world around them through play.

It is clear that preparing children for the future demands re-focusing concepts of learning and education.

Knowing how to read, write and do maths remain important for children to unlock the world in front of them.

An increasingly interconnected and dynamic world means children will find themselves changing jobs several times during their lives – switching to jobs that don’t exist today, and which they might have to invent themselves.

The question is how do we foster the above-mentioned breadth of skills, and keep alive the natural ability of children to learn throughout a lifetime – instead of eroding it when they enter formal schooling?

Achieving this is simpler than you might think: engaging children in positive, playful experiences.

Different forms of play provide children with the opportunity to develop social, emotional, physical and creative skills in addition to cognitive ones.

Lifelong play

If we agree on the urgent need for developing skills of complex problem solving, critical thinking and creativity, it is essential that we recognise that these skills are built by learning through play across the lifespan.

As we invest in our children’s future, let’s be sure to guard against directed learning, “schoolification” or three-year-olds learning their alphabet and numbers in written form when there is no evidence that this will make them better readers.

We need to challenge ourselves on the logic of flashcards and homework for our youngest at home, and see the value of continuing to create joyful, meaningful play moments with our children.

The natural ability of children to learn through play may be the best-kept, low-cost secret for addressing the skills agenda with potential to equip both our children and our economies to thrive.

Plus, it’s fun. So, what’s stopping us? Let’s play!

 

50 economías mas innovadoras al inicio del 2018

Comments off

The U.S. Drops Out of the Top 10 in Innovation Ranking

 Updated on 
https://www.bloomberg.com/news/articles/2018-01-22/south-korea-tops-global-innovation-ranking-again-as-u-s-falls
  • U.S. out of top 10 for first time in the gauge’s six years
  • South Korea, Sweden repeat as 2018 leaders, Singapore is 3rd

Score another one for Seoul while Silicon Valley slides.

 The U.S. dropped out of the top 10 in the 2018 Bloomberg Innovation Index for the first time in the six years the gauge has been compiled. South Korea and Sweden retained their No. 1 and No. 2 rankings.

The index scores countries using seven criteria, including research and development spending and concentration of high-tech public companies.

 

The U.S. fell to 11th place from ninth mainly because of an eight-spot slump in the post-secondary, or tertiary, education-efficiency category, which includes the share of new science and engineering graduates in the labor force. Value-added manufacturing also declined. Improvement in the productivity score couldn’t make up for the lost ground.

 “I see no evidence to suggest that this trend will not continue,” said Robert D. Atkinson, president of the Information Technology & Innovation Foundation in Washington, D.C. “Other nations have responded with smart, well-funded innovation policies like better R&D tax incentives, more government funding for research, more funding for technology commercialization initiatives.”

Singapore jumped ahead of European economies Germany, Switzerland and Finland into third place on the strength of its top ranking in the tertiary-efficiency category.

“Singapore has always placed strong focus on educating her populace, especially in STEM disciplines,” said Yeo Kiat Seng, professor and associate provost at the Singapore University of Technology and Design, referring to science, technology, engineering and mathematics. It also has a “steadfast commitment to funding R&D and innovation,” added Yeo, who holds 38 patents.

Supplier Ecosystem

South Korea remained the global-innovation gold medalist for the fifth consecutive year. Samsung Electronics Co., the nation’s most-valuable company by market capitalization, has received more U.S. patents in the 2000s than any firm except International Business Machines Corp. And its semiconductors, smartphones and digital-media equipment spawned an ecosystem of Korean suppliers and partners similar to what Japan developed around Sony Corp. and Toyota Motor Corp.

China moved up two spots to 19th, buoyed by its high proportion of new science and engineering graduates in the labor force and increasing number of patents by innovators such as Huawei Technologies Co.

“One common trait of the U.S., Korea and China is that people accept failure as part of the process,” said Prinn Panitchpakdi, country head of CLSA Thailand, an Asian brokerage and investment group. “Innovation lags in countries where the culture emphasizes risk avoidance and where R&D is seen purely an expense, not an investment. That’s the mindset in Thailand.” It dropped one spot from a year earlier, to 45th.

Top-Tier Countries

Japan, one of three Asian nations in the top 10, rose one slot to No. 6. France moved up to ninth from 11th, joining five other European economies in the top tier. Israel rounded out this group and was the only country to beat South Korea in the R&D category.

South Africa and Iran moved back into the top 50; the last time both were included was 2014. Turkey was one of the biggest gainers, jumping four spots to 33rd because of improvements in tertiary efficiency, productivity and two other categories.

The biggest losers were New Zealand and Ukraine, which each dropped four places. The productivity measure influenced New Zealand’s shift, while Ukraine was hurt by a lower tertiary-efficiency ranking.

Movements in this year’s list were generally less dramatic than last year, when Russia took a 14-spot tumble following sanctions related to Ukraine and the plunge in energy prices. In the current index, it moved up one spot to 25th.

The 2018 ranking process began with more than 200 economies. Each was scored on a 0-100 scale based on seven equally weighted categories. Nations that didn’t report data for at least six categories were eliminated, trimming the list to 80. Bloomberg released the top 50 and category scores within this cohort. For additional data, click here.

Prospectiva como una herramienta de inteligencia estratégica – Philippe Destatte

Comments off

Foresight as a strategic intelligence tool

Liège, January 19, 2018

PhD2050 (Philippe Destatte)

Rien dans l’univers ne peut résister à l’ardeur convergente d’un nombre suffisamment grand d’intelligences groupées et organisées (Teilhard, 1947)

1. What is foresight, and in what way is it strategic? [1]

 In the form in which we know it today in Europe, foresight represents an encounter and interaction between French and Latin developments, on the one hand, and those in the Anglosphere on the other. In English-speaking countries, the practice of foresight has evolved over time from a concern with military interests (such as improving defence systems) to industrial objectives (such as increasing competitiveness) and societal issues (such as ensuring the welfare of the population or ensuring social harmony). Since the 1960s, its chosen field has shifted from fundamental science to key technologies, then to the analysis of innovation systems, and finally to the study of the entire societal system. Having started out within a single discipline, namely the exact sciences, foresight has become pluridisciplinary, multidisciplinary and interdisciplinary, with an openness to the social sciences [2]. In doing so, it has moved considerably closer to the French approach, abandoning many of its earlier forecasting ambitions for a more strategic focus.

The French school of foresight (referred to as la prospective) originates in the thought of the philosopher and entrepreneur Gaston Berger. Deriving from a philosophy of collective action and engagement, it deals with value systems and constructs knowledge for political purposes [3], and has likewise become increasingly strategic in nature through contact with the worlds of international organisations, companies and regional territories [4]. Taking account of the long-term and la longue durée by postulating the plurality of possible futures, adopting the analysis of complex systems and deploying the theory and practice of modelling, foresight generates a strategic desire and willingness in order to influence and affect history. As I have helped to define it in various contexts – European (the Mutual Learning Platform of DG Research, DG Enterprise & Industry, and DG Regional & Urban Policy, supported by the Committee of the Regions) [5], French (the European Regional Foresight College) created under the auspices of the Interministerial Delegation of Land Planning and Regional Attractiveness (DATAR) in Paris) [6] or in Wallonia (the Wallonia Evaluation and Foresight Society) [7]– foresight is an independent, dialectical and rigorous process, conducted in a transdisciplinary way and taking in the longer sweep of history. It can shed light on questions of the present and the future, firstly by considering them in a holistic, systemic and complex framework, and secondly by setting them in a temporal context over and beyond historicity. Concerned above all with planning and action, its purpose is to provoke one or more transformations within the system that it apprehends by mobilising collective intelligence [8]. This definition is that of both la prospective and foresight; at any rate it was designed as such, as part of a serious effort to bring about convergence between these two tools undertaken by, in particular, the team of Unit K2 of DG Research and Innovation at the European Commission, led at the time by Paraskevas Caracostas.

The main distinguishing characteristic of the strategy behind the process of la prospective or foresight – some refer to la prospective stratégique or strategic foresight, which to my mind are pleonasms – is that it does not have a linear relationship with the diagnosis or the issues. Fundamentally, this tool reflects both the long-term issues it seeks to address and a vision of a desirable future that it has constructed with the actors concerned. Its circular process mobilises collective and collaborative intelligence at every step in order to bring about in reality a desired and jointly constructed action that operates over the long term and is intended to be efficient and operational. Foresight watch takes place at every step of this process. I define this as a continuous and largely iterative activity of active observation and systemic analysis of the environment, in the short, medium and long term, to anticipate developments and identify present and future issues with the ultimate purpose of forming collective visions and action strategies. It is based on creating and managing the knowledge needed as input into the process of foresight itself. This process extends from the choice of areas to work on (long-term issues) and of the necessary heuristic, via the analysis and capitalisation of information and its transformation into useful knowledge, to communication and evaluation [9].

2. Foresight and strategic intelligence

The Strategic Intelligence Research Group (GRIS) at HEC Liège, under the direction of Professor Claire Gruslin, sees strategic intelligence as ‘a mode of governance based on the acquisition and protection of strategic and relevant information and on the potential for influence, which is essential for all economic actors wishing to participate proactively in development and innovation by building a distinctive and lasting advantage in a highly competitive and turbulent environment’ [10].

For its part, the famous Martre Report of 1994, in its definition of economic intelligence, delineated a process fairly similar to that which I mentioned for foresight, likewise including monitoring, heuristics, the examination of issues, a shared vision and the strategy to achieve it, all set in a ‘continuous cycle’:

Economic intelligence can be defined as the set of coordinated actions by which information that is useful to economic actors is sought out, processed and distributed for exploitation. These various actions are carried out legally and benefit from the protection necessary to preserve the company’s assets, under optimal quality, time and cost conditions. Useful information is that needed by the different decision-making levels in the company or the community in order to develop and implement in a coherent manner the strategy and tactics necessary to achieve its objectives, with the goal of improving its position in its competitive context. These actions within the company are organised in a continuous cycle, generating a shared vision of the objectives to be achieved’ [11].

What is of particular interest in the search for parallels or convergences between economic intelligence and foresight is the idea, developed by Henri Martre, Philippe Clerc and Christian Harbulot, that the notion of economic intelligence goes beyond documentation, monitoring, data protection or even influence, to become part of ‘a true strategic and tactical intention’, supporting actions at different levels, from the company up to the global, international level[12].

 3. Foresight in strategic intelligence

At the turn of the millennium, as part of the European ESTO (European Science and Technology Observatory) programme, the Institute for Prospective Technological Studies (IPTS) in Seville gathered a series of researchers to examine the idea of strategic intelligence as a methodological vehicle or umbrella for public policy-making. The idea was to recognise and take account of the diversity of methods made available to decision-makers in order to structure and mobilise them to ensure successful policy-making [13]. As Ken Ducatel, one of the coordinators of this discussion, put it, ‘The concept of strategic intelligence not only offers a powerful methodology for addressing (EU) issues, but has the flexibility to connect to other forms of interaction, adapt to new models of governance and open up to technological changes and social developments that are faster than we have ever known before’ [14].

At the time of the REGSTRAT project coordinated by the Stuttgart-based Steinbeis Europa Zentrum in 2006, the concept of Strategic Policy Intelligence (SPI) tools – i.e. intelligence tools applied to public policy – had become accepted, in particular among the representatives of the Mutual Learning Platform referred to earlier. As my fellow foresight specialist Günter Clar and I pointed out in the report on the subject of foresight, strategic intelligence as applied to public policy can be defined as a set of actions designed to identify, implement, disseminate and protect information in order to make it available to the right person, at the right time, with the goal of making the right decision. As had become clear during the work, SPI’s tools include foresight, evaluation of technological choices, evaluation, benchmarking, quality procedures applied to territories, and so on. These tools are used to provide decision-makers and stakeholders with clear, objective, politically unbiased, independent and, most importantly, anticipatory information [15].

This work also made it possible to define strategic intelligence as observed in this context. Its content is adapted to the context, with hard and soft sides and a distributed character, underpinned by scale effects, the facilitation of learning, a balance between specific and generic approaches and increased accessibility. Its process is based on demand, the need to mobilise creativity, making tacit knowledge explicit, the evaluation of technological potential, a facilitation of the process and an optimal link with decision-making [16].

From this viewpoint, foresight is clearly one of the tools of strategic intelligence for the use of policy-makers and stakeholders.

 Anticipation, innovation and decision-making

The Directorate General for Research and Innovation of the European Commission has been involved for some years in forward-looking activities (FLAs) [17], just as the European Institute in Seville had been – as we saw – when it developed strategic policy intelligence (SPI) [18] tools for use in public policy-making[19]. FLAs include all systematic and participatory studies and processes designed to consider possible futures, proactively and strategically, and to explore and map out paths towards desirable goals [20]. This field obviously includes numerous different methods for anticipation of future developments, evaluation of technological choices, ex-ante evaluation, and so on.

In 2001, Ruud Smits, Professor of Technology and Innovation at the University of Utrecht, made three recommendations that he regarded as essential. First, he stressed, it was time to call a halt to the debate about definitions and to exploit the synergies between the different branches of strategic intelligence. Next, he noted the need to improve the quality of strategic intelligence and reinforce its existing sources. Finally, Smits called for the development of an interface between strategic intelligence sources and their users[21]. This programme has yet to be implemented, and our work at GRIS could be seen as reflecting this ambition.

This cognitive approach without a doubt brings us back to the distinction put forward by psychologist and Nobel Prize winner Daniel Kahneman, who refers in his book Thinking fast and slow to two cerebral systems. He describes System 1 as automatic, direct, impulsive, everyday, fast, intuitive, and involving no real effort; we use it in 95% of circumstances. System 2, by contrast, is conscious, rational, deliberative, slow, analytical and logical; we only use it 5% of the time, especially to make decisions when we find ourselves in systems that we consider complex[22]. It is at such times that we have to make the effort to mobilise tools suited to the tasks we are tackling.

This question concerns all strategic intelligence tools, including foresight. Not just because the investments to be made in these fields of research are considerable, but because, often, many of us are unaware of the extent of that which we are unable to understand. All too commonly, we think that what we can see represents the full extent of what exists. We confine ourselves to the variables that we are able to detect, embrace and measure, and have a considerable capacity to refuse to recognise other variables. We know that this syndrome of WYSIATI (‘what you see is all there is’) is devastating: it prevents us from grasping reality in its entirety by making us think that we are in full command of the territory around us and the horizon. As Kahneman puts it, ‘You cannot help dealing with limited information you have as if it were all there is to know’ [23].

This flaw – and there are others – should encourage us to join forces to cross methodological and epistemological boundaries and work to create more robust instruments that can be used to design more proactive and better-equipped public policies.

 

Philippe Destatte

@PhD2050

 

[1] A first version of this paper was presented at the Liège Business School on September 28, 2016.

[2] Paraskevas CARACOSTAS & Ugar MULDUR, Society, The Endless Frontier, A European Vision of Research and Innovation Policies for the 21st Century, Brussels, European Commission, 1997.

[3] ‘(…) By applying the principles of intentional analysis associated with phenomenology to the experience of time, Gaston Berger substitutes for the “myth of time” a temporal norm, an intersubjective construct for collective action. His philosophy of knowledge is thus constituted as a science of foresight practice whose purpose is normative: it is oriented towards work on values and the construction of a political project; it is a “philosophy in action”.‘ Chloë VIDAL, La prospective territoriale dans tous ses états, Rationalités, savoirs et pratiques de la prospective (1957-2014), p. 31, Lyon, Thèse ENS, 2015. Our translation.

[4] On la prospective territoriale, representing an encounter between the principles of foresight and those of regional development, see the reference to the DATAR international conference in March 1968. Chloë VIDAL, La prospective territoriale dans tous ses états, Rationalités, savoirs et pratiques de la prospective (1957-2014)…, p. 214-215.

[5] Günter CLAR & Philippe DESTATTE, Regional Foresight, Boosting Regional Potential, Mutual Learning Platform Regional Foresight Report, Luxembourg, European Commission, Committee of the Regions and Innovative Regions in Europe Network, 2006.

http://www.institut-destree.eu/Documents/Reseaux/Günter-CLAR_Philippe-DESTATTE_Boosting-Regional-Potential_MLP-Foresight-2006.pdf

[6] Ph. DESTATTE & Ph. DURANCE eds, Les mots-clefs de la prospective territoriale, p. 43, Paris, DIACT-DATAR, La Documentation française, 2009.

[7] Ph. DESTATTE, Evaluation, prospective et développement régional, p. 381, Charleroi, Institut Destrée, 2001.

[8] Ph. Destatte, What is foresight ?, Blog PhD2050, May 30, 2013.

https://phd2050.wordpress.com/2013/05/30/what-is-foresight/

[9] René-Charles TISSEYRE, Knowledge Management, Théorie et pratique de la gestion des connaissances, Paris, Hermès-Lavoisier, 1999.

[10] Guy GOERMANNE, Note de réflexion, Tentatives de rapprochement entre la prospective et l’intelligence stratégique en Wallonie, p. 7, Brussels, August 2016, 64 p.

[11] Henri MARTRE, Philippe CLERC, Christian HARBULOT, Intelligence économique et stratégie des entreprises, p. 12-13, Paris, Commissariat général au Plan (Plan Commission) – La Documentation française, February 1994.

http://bdc.aege.fr/public/Intelligence_Economique_et_strategie_des_entreprises_1994.pdf

[12] ‘The notion of economic intelligence implies transcending the piecemeal actions designated by the terms documentation, monitoring (scientific and technological, competitive, financial, legal and regulatory etc.), protection of competitive capital, and influencing (strategy for influencing nation-states, role of foreign consultancies, information and misinformation operations, etc). It succeeds in transcending these things as a result of the strategic and tactical intention which is supposed to preside over the steering of piecemeal actions and over ensuring their success, and of the interaction between all levels of activity at which the economic intelligence function is exercised: from the grassroots (within companies), through intermediate levels (interprofessional, local), up to the national (concerted strategies between different decision-making centres), transnational (multinational groups) or international (strategies for influencing nation-states) levels.’ H. MARTRE, Ph. CLERC, Ch. HARBULOT, Intelligence économique et stratégie des entreprises…, p. 12-13. Our translation.

[13] Strategic intelligence can be defined as a set of actions designed to identify, implement, disseminate and protect information in order to make it available to the right person, at the right time, with the goal of making the right decision. (…) Strategic intelligence applied to public policy offers a variety of methodologies to meet the requirements of policy-makers. Derived from Daniel ROUACH, La veille technologique et l’intelligence économique, Paris, PUF, 1996, p. 7 & Intelligence économique et stratégie d’entreprises, Paris, Commissariat général au Plan (Plan Commission), 1994. – Alexander TÜBKE, Ken DUCATEL, James P. GAVIGAN, Pietro MONCADA-PATERNO-CASTELLO eds, Strategic Policy Intelligence: Current Trends, the State of the Play and perspectives, S&T Intelligence for Policy-Making Processes, p. V & VII, IPTS, Seville, Dec. 2001.

[14] Ibidem, p. IV.

[15] Günter CLAR & Ph. DESTATTE, Mutual Learning Platform Regional Foresight Report, p. 4, Luxembourg, IRE, EC-CoR, 2006.

[16] Ruud SMITS, The New Role of Strategic Intelligence, in A. TÜBKE, K. DUCATEL, J. P. GAVIGAN, P. MONCADA-PATERNO-CASTELLO eds, Strategic Policy Intelligence: Current Trends, p. 17.

[17] Domenico ROSSETTI di VALDALBERO & Parla SROUR-GANDON, European Forward Looking Activities, EU Research in Foresight and Forecast, Socio-Economic Sciences & Humanities, List of Activities, Brussels, European Commission, DGR, Directorate L, Science, Economy & Society, 2010. http://ec.europa.eu/research/social-sciences/forward-looking_en.html – European forward-looking activities, Building the future of « Innovation Union » and ERA, Brussels, European Commission, Directorate-General for Research and Innovation, 2011. ftp://ftp.cordis.europa.eu/pub/fp7/ssh/docs/european-forward-looking-activities_en.pdf

[18] ‘Strategic Intelligence is all about feeding actors (including policy makers) with the tailor made information they need to play their role in innovation systems (content) and with bringing them together to interact (amongst others to create common ground).’ Ruud SMITS, Technology Assessment and Innovation Policy, Seville, 5 Dec. 2002. ppt.

[19] A. TÜBKE, K. DUCATEL, J. P. GAVIGAN, P. MONCADA-PATERNO-CASTELLO eds, Strategic Policy Intelligence: Current Trends, …

[20] Innovation Union Information and Intelligence System I3S – EC 09/06/2011.

[21] R. SMITS, The New Role of Strategic Intelligence…, p. 17. – see also R. SMITS & Stefan KUHLMANN, Strengthening interfaces in innovation systems: rationale, concepts and (new) instruments, Strata Consolidating Workshop, Brussels, 22-23 April 2002, RTD-K2, June 2002. – R. SMITS, Stefan KUHLMANN and Philip SHAPIRA eds, The Theory and Practice of Innovation Policy, An International Research Handbook, Cheltenham UK, Northampton MA USA, Edward Elgar, 2010.

[22] Daniel KAHNEMAN, Thinking fast and slow, p. 201, New York, Farrar, Straus and Giroux, 2011.

[23] D. KAHNEMAN, Thinking fast and slow, p. 201.

Porqué el mundo está mejorando y posiblemente así continúe?

Comments off

Why the World Is Still Getting Better—and That’s Likely to Continue

If you read or watch the news, you’ll likely think the world is falling to pieces. Trends like terrorism, climate change, and a growing population straining the planet’s finite resources can easily lead you to think our world is in crisis.

But there’s another story, a story the news doesn’t often report. This story is backed by data, and it says we’re actually living in the most peaceful, abundant time in history, and things are likely to continue getting better.

The News vs. the Data

The reality that’s often clouded by a constant stream of bad news is we’re actually seeing a massive drop in poverty, fewer deaths from violent crime and preventable diseases. On top of that, we’re the most educated populace to ever walk the planet.

“Violence has been in decline for thousands of years, and today we may be living in the most peaceful era in the existence of our species.” –Steven Pinker

In the last hundred years, we’ve seen the average human life expectancy nearly double, the global GDP per capita rise exponentially, and childhood mortality drop 10-fold.

abundance-infographic-v9-today

That’s pretty good progress! Maybe the world isn’t all gloom and doom.

If you’re still not convinced the world is getting better, check out the charts in this article from Vox and on Peter Diamandis’ website for a lot more data.

Abundance for All Is Possible  

So now that you know the world isn’t so bad after all, here’s another thing to think about: it can get much better, very soon.

In their book Abundance: The Future Is Better Than You Think, Steven Kotler and Peter Diamandis suggest it may be possible for us to meet and even exceed the basic needs of all the people living on the planet today.

“In the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.”

This means making sure every single person in the world has adequate food, water and shelter, as well as a good education, access to healthcare, and personal freedom.

This might seem unimaginable, especially if you tend to think the world is only getting worse. But given how much progress we’ve already made in the last few hundred years, coupled with the recent explosion of information sharing and new, powerful technologies, abundance for all is not as out of reach as you might believe.

Throughout history, we’ve seen that in the hands of smart and driven innovators, science and technology take things which were once scarce and make them abundant and accessible to all.

Napoleon III
Napoleon III

In Abundance, Diamandis and Kotler tell the story of how aluminum went from being one of the rarest metals on the planet to being one of the most abundant…

In the 1800s, aluminum was more valuable than silver and gold because it was rarer. So when Napoleon III entertained the King of Siam, the king and his guests were honored by being given aluminum utensils, while the rest of the dinner party ate with gold.

But aluminum is not really rare.

In fact, aluminum is the third most abundant element in the Earth’s crust, making up 8.3% of the weight of our planet. But it wasn’t until chemists Charles Martin Hall and Paul Héroult discovered how to use electrolysis to cheaply separate aluminum from surrounding materials that the element became suddenly abundant.

The problems keeping us from achieving a world where everyone’s basic needs are met may seem like resource problems — when in reality, many are accessibility problems.

The Engine Driving Us Toward Abundance: Exponential Technology

History is full of examples like the aluminum story.  The most powerful one of the last few decades is information technology. Think about all the things that computers and the internet made abundant that were previously far less accessible because of cost or availability …

Here are just a few examples:

  • Easy access to the world’s information
  • Ability to share information freely with anyone and everyone
  • Free/cheap long-distance communication
  • Buying and selling goods/services regardless of location

Less than two decades ago, when someone reached a certain level of economic stability, they could spend somewhere around $10K on stereos, cameras, entertainment systems, etc — today, we have all that equipment in the palm of our hand.

Now, there is a new generation of technologies heavily dependant on information technology and, therefore, similarly riding the wave of exponential growth. When put to the right use, emerging technologies like artificial intelligenceroboticsdigital manufacturing, nano-materials and digital biology make it possible for us to drastically raise the standard of living for every person on the planet.

abundance-infographic-v9-tools

These are just some of the innovations which are unlocking currently scarce resources:

    • IBM’s Watson Health is being trained and used in medical facilities like the Cleveland Clinic to help doctors diagnose disease. In the future, it’s likely we’ll trust AI just as much, if not more than humans to diagnose disease, allowing people all over the world to have access to great diagnostic tools regardless of whether there is a well-trained doctor near them.
    • Self-driving cars are already on the roads of several American cities and will be coming to a road near you in the next couple years. Considering the average American spends nearly two hours driving every day, not having to drive would free up an increasingly scarce resource: time.

The Change-Makers

Today’s innovators can create enormous change because they have these incredible tools—which would have once been available only to big organizations—at their fingertips. And, as a result of our hyper-connected world, there is an unprecedented ability for people across the planet to work together to create solutions to some of our most pressing problems today.

“In today’s hyperlinked world, solving problems anywhere, solves problems everywhere.” –Peter Diamandis and Steven Kotler, Abundance

According to Diamandis and Kotler, there are three groups of people accelerating positive change.

abundance-infographic-v9-people

  1. DIY Innovators

    In the 1970s and 1980s, the Homebrew Computer Club was a meeting place of “do-it-yourself” computer enthusiasts who shared ideas and spare parts. By the 1990s and 2000s, that little club became known as an inception point for the personal computer industry — dozens of companies, including Apple Computer, can directly trace their origins back to Homebrew.

    Since then, we’ve seen the rise of the social entrepreneur, the Maker Movement and the DIY Bio movement, which have similar ambitions to democratize social reform, manufacturing, and biology, the way Homebrew democratized computers. These are the people who look for new opportunities and aren’t afraid to take risks to create something new that will change the status-quo.

  2. Techno-Philanthropists

    Unlike the robber barons of the 19th and early 20th centuries, today’s “techno-philanthropists” are not just giving away some of their wealth for a new museum, they are using their wealth to solve global problems and investing in social entrepreneurs aiming to do the same.

    The Bill and Melinda Gates Foundation has given away at least $28 billion, with a strong focus on ending diseases like polio, malaria, and measles for good. Jeff Skoll, after cashing out of eBay with $2 billion in 1998, went on to create the Skoll Foundation, which funds social entrepreneurs across the world. And last year, Mark Zuckerberg and Priscilla Chan pledged to give away 99% of their $46 billion in Facebook stock during their lifetimes.

  3. The Rising Billion

    Cisco estimates that by 2020, there will be 4.1 billion people connected to the internet, up from 3 billion in 2015. This number might even be higher, given the efforts of companies like Facebook, Google, Virgin Group, and SpaceX to bring internet access to the world. That’s a billion new people in the next several years who will be connected to the global conversation, looking to learn, create and better their own lives and communities.In his book, Fortune at the Bottom of the Pyramid, C.K. Pahalad writes that finding co-creative ways to serve this rising market can help lift people out of poverty while creating viable businesses for inventive companies.

The Path to Abundance

Eager to create change, innovators armed with powerful technologies can accomplish incredible feats. Kotler and Diamandis imagine that the path to abundance occurs in three tiers:

  • Basic Needs (food, water, shelter)
  • Tools of Growth (energy, education, access to information)
  • Ideal Health and Freedom

abundance-infographic-v9-path

Of course, progress doesn’t always happen in a straight, logical way, but having a framework to visualize the needs is helpful.

Many people don’t believe it’s possible to end the persistent global problems we’re facing. However, looking at history, we can see many examples where technological tools have unlocked resources that previously seemed scarce.

Technological solutions are not always the answer, and we need social change and policy solutions as much as we need technology solutions. But we have seen time and time again, that powerful tools in the hands of innovative, driven change-makers can make the seemingly impossible happen.


You can download the full “Path to Abundance” infographic here. It was created under a CC BY-NC-ND license. If you share, please attribute to Singularity University.

Image Credit: janez volmajer / Shutterstock.com

136

Mirada tendencial al 2030 WEF

Comments off

Cuarta revolución industrial
Medium xgbnjuevfyviaoncfgrsfrb5 xzsqu260ghhi2hqmxw
Les pedimos a los expertos de nuestros Consejos Mundiales Futuros que compartieran su opinión acerca del mundo en 2030; y estos son los resultados, desde la muerte de las compras hasta el resurgimiento de los Estados nación.

“Nada me pertenece. No tengo coche. No soy dueña de mi casa. No poseo electrodomésticos ni ropa”, escribe la parlamentaria danesa Ida Auken. En la ciudad de 2030, las compras son un recuerdo lejano; sus habitantes han encontrado la solución de la energía limpia y toman prestado lo que necesitan a pedido.

«China tomó la delantera en 2017 con un mercado para negociar el derecho a emitir una tonelada de CO2, y colocó al mundo en un camino hacia un solo precio del carbono y un poderoso incentivo para abandonar los combustibles fósiles», predice Jane Burston, directora de Clima y Medioambiente del Laboratorio Nacional de Física del Reino Unido. Paralelamente, Europa se encontró en el centro del comercio de paneles solares baratos y eficientes, ya que los precios de las energías renovables descendieron considerablemente.

Robert Muggah, director de Investigación del Instituto Igarapé, predice que no habrá una sola potencia mundial, sino un puñado de países —entre los que se destacan Estados Unidos, Rusia, China, Alemania, India y Japón— que presentarán tendencias semiimperiales. Sin embargo, al mismo tiempo, el papel del Estado se ve amenazado por otras tendencias, que incluyen el crecimiento de las ciudades.

Según Melanie Walker, una médica y asesora del Banco Mundial, el hospital tal como lo conocemos está en vías de desaparición; habrá menos accidentes gracias a los vehículos autodirigidos y grandes avances en medicina preventiva y personalizada. No habrá escalpelos ni donantes de órganos, sino pequeños tubos robotizados y órganos bioimpresos.

Al igual que nuestros abuelos, no utilizaremos la carne como alimento básico, escribe Tim Benton, profesor de Ecología de Poblaciones de la Universidad de Leeds, Reino Unido. No serán la gran agricultura o los pequeños productores artesanales quienes ganen, sino una combinación de ambos, con alimentos preparados rediseñados para ser más saludables y menos dañinos para el medioambiente y nuestro cuerpo.

Los refugiados sirios con formación académica superior habrán alcanzado la mayoría de edad para el año 2030, y defenderán la integración económica de aquellos que han sido forzados a huir del conflicto. Según Lorna Solís, fundadora y directora ejecutiva de la ONG Blue Rose Compass, el mundo necesita estar mejor preparado para las poblaciones en movimiento, ya que el cambio climático desplazará alrededor de 1000 millones de personas.

«Nos olvidamos de los derechos y libertades que refuerzan nuestras democracias a nuestro propio riesgo», escribe Kenneth Roth, director ejecutivo de Human Rights Watch.

Además, una vez que lleguemos allí, es probable que descubramos evidencia de vida extraterrestre, escribe Ellen Stofan, jefa científica de la NASA. La “gran ciencia” nos ayudará a responder a grandes preguntas sobre la vida en la tierra, así como a abrir aplicaciones prácticas para la tecnología espacial.